메뉴 건너뛰기




Volumn 8, Issue 2, 2009, Pages 289-320

Negative correlation in incremental learning

Author keywords

Classification; Incremental learning; Multi layer perceptrons; Negative correlation learning; Neural network ensembles; Self generating neural tree; Self organising neural grove

Indexed keywords

ACCURACY; ARTICLE; ARTIFICIAL NEURAL NETWORK; CORRELATION ANALYSIS; DATA BASE; FUZZY SYSTEM; LEARNING ALGORITHM; MATHEMATICAL COMPUTING; PROBLEM SOLVING;

EID: 67349147665     PISSN: 15677818     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11047-007-9063-7     Document Type: Article
Times cited : (26)

References (37)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123-140
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45(1):5-32
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 10444241776 scopus 로고    scopus 로고
    • Ph.D. Thesis, School of Computer Science, The University of Birmingham, Birmingham, UK. URL
    • Brown G (2004) Diversity in neural network ensembles. Ph.D. Thesis, School of Computer Science, The University of Birmingham, Birmingham, UK. URL: Http://www.cs.man.ac.uk/~gbrown/research.php
    • (2004) Diversity in Neural Network Ensembles
    • Brown, G.1
  • 5
    • 25444484657 scopus 로고    scopus 로고
    • Managing diversity in regression ensembles
    • Brown G, Wyatt JL, Tiño P (2005) Managing diversity in regression ensembles. J Mach Learn Res 6:1621-1650
    • (2005) J Mach Learn Res , vol.6 , pp. 1621-1650
    • Brown, G.1    Wyatt, J.L.2    Tiño, P.3
  • 6
    • 0025889915 scopus 로고
    • ARTMAP: Supervied real-time learning and classification of nonstationary data by a self organizing neural network
    • Carpenter GA, Grossberg S, Reynolds JH (1991) ARTMAP: Supervied real-time learning and classification of nonstationary data by a self organizing neural network. Neural Networks 4(5):565-588
    • (1991) Neural Networks , vol.4 , Issue.5 , pp. 565-588
    • Carpenter, G.A.1    Grossberg, S.2    Reynolds, J.H.3
  • 7
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps
    • Carpenter GA, Grossberg S, Markuzon N, Reynolds JH (1992) Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans Neural Networks 3:698-713
    • (1992) IEEE Trans Neural Networks , vol.3 , pp. 698-713
    • Carpenter, G.A.1    Grossberg, S.2    Markuzon, N.3    Reynolds, J.H.4
  • 8
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • Chandra A, Yao X (2006) Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 69:686-700
    • (2006) Neurocomputing , vol.69 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 9
    • 33845291177 scopus 로고    scopus 로고
    • Trade-off between diversity and accuracy in ensemble generation
    • In: Jin Y (ed) Springer-Verlag
    • Chandra A, Chen H, Yao X (2006) Trade-off between diversity and accuracy in ensemble generation. In: Jin Y (ed) Multi-objective machine learning. Springer-Verlag, pp 429-464
    • (2006) Multi-Objective Machine Learning , pp. 429-464
    • Chandra, A.1    Chen, H.2    Yao, X.3
  • 10
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research: Four current directions
    • Dietterich TG (1997) Machine learning research: Four current directions. AI Mag 18:97-136
    • (1997) AI Mag , vol.18 , pp. 97-136
    • Dietterich, T.G.1
  • 11
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich TG (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895-1923
    • (1998) Neural Comput , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 12
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • Dietterich T (2000) An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Mach Learn 40(2):1-22
    • (2000) Mach Learn , vol.40 , Issue.2 , pp. 1-22
    • Dietterich, T.1
  • 14
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire R (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comp Syst Sci 55(1):119-139
    • (1997) J Comp Syst Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 18
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Islam MM, Yao X, Murase K (2003) A constructive algorithm for training cooperative neural network ensembles. IEEE Trans Neural Networks 14(4):820-834
    • (2003) IEEE Trans Neural Networks , vol.14 , Issue.4 , pp. 820-834
    • Islam, M.M.1    Yao, X.2    Murase, K.3
  • 19
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
    • Kasabov N (2001) Evolving fuzzy neural networks for supervised/ unsupervised online knowledge-based learning. IEEE Trans Syst Man Cybernet - Part B: Cybernet 31(6):902-918
    • (2001) IEEE Trans Syst Man Cybernet - Part B: Cybernet , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 21
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L, Whitaker C (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51(2):181-207
    • (2003) Mach Learn , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 23
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu Y, Yao X (1999a) Ensemble learning via negative correlation. Neural Networks 12:1399-1404
    • (1999) Neural Networks , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 24
    • 0033280266 scopus 로고    scopus 로고
    • Simultaneous training of negatively correlated neural networks in an ensemble
    • Liu Y, Yao X (1999b) Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Trans Syst Man Cybernet Part B - Cybernet 29(6):716-725
    • (1999) IEEE Trans Syst Man Cybernet Part B - Cybernet , vol.29 , Issue.6 , pp. 716-725
    • Liu, Y.1    Yao, X.2
  • 30
    • 0025448521 scopus 로고
    • Strength of weak learning
    • Schapire R (1990) Strength of weak learning. Mach Learn 5:197-227
    • (1990) Mach Learn , vol.5 , pp. 197-227
    • Schapire, R.1
  • 31
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire RE, Freund Y, Bartlett PL, Lee WS (1998) Boosting the margin: A new explanation for the effectiveness of voting methods. Ann Stat 26(5):1651-1686
    • (1998) Ann Stat , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.L.3    Lee, W.S.4
  • 33
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • Tang EK, Suganthan PN, Yao X (2006) An analysis of diversity measures. Mach Learn 62(1):247-271
    • (2006) Mach Learn , vol.62 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.