-
1
-
-
61949463911
-
IL-17 and Th17 Cells
-
Korn T., et al. IL-17 and Th17 Cells. Ann. Rev. Immunol. 2009, 27:485-517.
-
(2009)
Ann. Rev. Immunol.
, vol.27
, pp. 485-517
-
-
Korn, T.1
-
2
-
-
33748588423
-
The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells
-
Ivanov I.I., et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006, 126:1121-1133.
-
(2006)
Cell
, vol.126
, pp. 1121-1133
-
-
Ivanov, I.I.1
-
3
-
-
73349101421
-
Tc17 CD8 T cells: functional plasticity and subset diversity
-
Yen H.R., et al. Tc17 CD8 T cells: functional plasticity and subset diversity. J. Immunol. 2009, 183:7161-7168.
-
(2009)
J. Immunol.
, vol.183
, pp. 7161-7168
-
-
Yen, H.R.1
-
4
-
-
60549102720
-
Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22
-
Takatori H., et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 2009, 206:35-41.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 35-41
-
-
Takatori, H.1
-
5
-
-
77951878587
-
Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology
-
Buonocore S., et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 2010, 464:1371-1375.
-
(2010)
Nature
, vol.464
, pp. 1371-1375
-
-
Buonocore, S.1
-
6
-
-
59649099774
-
A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity
-
Cella M., et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009, 457:722-725.
-
(2009)
Nature
, vol.457
, pp. 722-725
-
-
Cella, M.1
-
7
-
-
57849145994
-
Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin
-
Luci C., et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 2009, 10:75-82.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 75-82
-
-
Luci, C.1
-
8
-
-
57849117363
-
RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
-
Sanos S.L., et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 2009, 10:83-91.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 83-91
-
-
Sanos, S.L.1
-
9
-
-
57449118239
-
Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
-
Satoh-Takayama N., et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008, 29:958-970.
-
(2008)
Immunity
, vol.29
, pp. 958-970
-
-
Satoh-Takayama, N.1
-
10
-
-
79251578351
-
Cutting edge: crucial role of IL-1 and IL-23 in the innate IL-17 response of peripheral lymph node NK1.1- invariant NKT cells to bacteria
-
Doisne J.M., et al. Cutting edge: crucial role of IL-1 and IL-23 in the innate IL-17 response of peripheral lymph node NK1.1- invariant NKT cells to bacteria. J. Immunol. 2011, 186:662-666.
-
(2011)
J. Immunol.
, vol.186
, pp. 662-666
-
-
Doisne, J.M.1
-
11
-
-
79955612071
-
Mucosal-associated invariant T cells: unconventional development and function
-
Le Bourhis L., et al. Mucosal-associated invariant T cells: unconventional development and function. Trends Immunol. 2011, 32:212-218.
-
(2011)
Trends Immunol.
, vol.32
, pp. 212-218
-
-
Le Bourhis, L.1
-
12
-
-
77954143695
-
Innate IL-17-producing cells: the sentinels of the immune system
-
Cua D.J., Tato C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 2010, 10:479-489.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, pp. 479-489
-
-
Cua, D.J.1
Tato, C.M.2
-
13
-
-
79955030498
-
Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22
-
Sonnenberg G.F., et al. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 2011, 12:383-390.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 383-390
-
-
Sonnenberg, G.F.1
-
14
-
-
77449147324
-
Th17 cells in mucosal immunity and tissue inflammation
-
Kolls J.K. Th17 cells in mucosal immunity and tissue inflammation. Semin. Immunopathol. 2010, 32:1-2.
-
(2010)
Semin. Immunopathol.
, vol.32
, pp. 1-2
-
-
Kolls, J.K.1
-
15
-
-
79959201412
-
Human nutrition, the gut microbiome and the immune system
-
Kau A.L., et al. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474:327-336.
-
(2011)
Nature
, vol.474
, pp. 327-336
-
-
Kau, A.L.1
-
16
-
-
53649100675
-
ATP drives lamina propria T(H)17 cell differentiation
-
Atarashi K., et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008, 455:808-812.
-
(2008)
Nature
, vol.455
, pp. 808-812
-
-
Atarashi, K.1
-
17
-
-
79960131814
-
Identification of an innate T helper type 17 response to intestinal bacterial pathogens
-
Geddes K., et al. Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat. Med. 2011, 17:837-844.
-
(2011)
Nat. Med.
, vol.17
, pp. 837-844
-
-
Geddes, K.1
-
18
-
-
53349173070
-
Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine
-
Ivanov I.I., et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 2008, 4:337-349.
-
(2008)
Cell Host Microbe
, vol.4
, pp. 337-349
-
-
Ivanov, I.I.1
-
19
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov I.I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485-498.
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
-
20
-
-
70349742524
-
The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
-
Gaboriau-Routhiau V., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677-689.
-
(2009)
Immunity
, vol.31
, pp. 677-689
-
-
Gaboriau-Routhiau, V.1
-
21
-
-
74049122536
-
Enteric defensins are essential regulators of intestinal microbial ecology
-
Salzman N.H., et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 2010, 11:76-83.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 76-83
-
-
Salzman, N.H.1
-
22
-
-
81255158786
-
IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens
-
Song X., et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat. Immunol. 2011, 12:1151-1158.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 1151-1158
-
-
Song, X.1
-
23
-
-
40049083827
-
Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
-
Zheng Y., et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 2008, 14:282-289.
-
(2008)
Nat. Med.
, vol.14
, pp. 282-289
-
-
Zheng, Y.1
-
24
-
-
58149231532
-
Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses
-
Ishigame H., et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 2009, 30:108-119.
-
(2009)
Immunity
, vol.30
, pp. 108-119
-
-
Ishigame, H.1
-
25
-
-
59849114998
-
RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F
-
Leppkes M., et al. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 2009, 136:257-267.
-
(2009)
Gastroenterology
, vol.136
, pp. 257-267
-
-
Leppkes, M.1
-
26
-
-
45549097533
-
IL-6-dependent mucosal protection prevents establishment of a microbial niche for attaching/effacing lesion-forming enteric bacterial pathogens
-
Dann S.M., et al. IL-6-dependent mucosal protection prevents establishment of a microbial niche for attaching/effacing lesion-forming enteric bacterial pathogens. J. Immunol. 2008, 180:6816-6826.
-
(2008)
J. Immunol.
, vol.180
, pp. 6816-6826
-
-
Dann, S.M.1
-
27
-
-
33646560950
-
Transforming growth factor-beta induces development of the T(H)17 lineage
-
Mangan P.R., et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006, 441:231-234.
-
(2006)
Nature
, vol.441
, pp. 231-234
-
-
Mangan, P.R.1
-
28
-
-
65549099573
-
Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine
-
Raffatellu M., et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 2009, 5:476-486.
-
(2009)
Cell Host Microbe
, vol.5
, pp. 476-486
-
-
Raffatellu, M.1
-
29
-
-
78649957904
-
Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model
-
Geddes K., et al. Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model. Infect. Immun. 2010, 78:5107-5115.
-
(2010)
Infect. Immun.
, vol.78
, pp. 5107-5115
-
-
Geddes, K.1
-
30
-
-
79961120860
-
Early MyD88-dependent induction of interleukin-17A expression during Salmonella colitis
-
Keestra A.M., et al. Early MyD88-dependent induction of interleukin-17A expression during Salmonella colitis. Infect. Immun. 2011, 79:3131-3140.
-
(2011)
Infect. Immun.
, vol.79
, pp. 3131-3140
-
-
Keestra, A.M.1
-
31
-
-
58449115208
-
Interleukin-23 orchestrates mucosal responses to Salmonella enterica serotype Typhimurium in the intestine
-
Godinez I., et al. Interleukin-23 orchestrates mucosal responses to Salmonella enterica serotype Typhimurium in the intestine. Infect. Immun. 2009, 77:387-398.
-
(2009)
Infect. Immun.
, vol.77
, pp. 387-398
-
-
Godinez, I.1
-
32
-
-
41849142985
-
Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut
-
Raffatellu M., et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat. Med. 2008, 14:421-428.
-
(2008)
Nat. Med.
, vol.14
, pp. 421-428
-
-
Raffatellu, M.1
-
33
-
-
69449106110
-
IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells
-
Guo L., et al. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:13463-13468.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 13463-13468
-
-
Guo, L.1
-
34
-
-
79956116032
-
RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation
-
Codarri L., et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 2011, 12:560-567.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 560-567
-
-
Codarri, L.1
-
35
-
-
79956152607
-
The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF
-
El-Behi M., et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 2011, 12:568-575.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 568-575
-
-
El-Behi, M.1
-
36
-
-
79960919901
-
Control of TH17 cells occurs in the small intestine
-
Esplugues E., et al. Control of TH17 cells occurs in the small intestine. Nature 2011, 475:514-518.
-
(2011)
Nature
, vol.475
, pp. 514-518
-
-
Esplugues, E.1
-
37
-
-
46749113368
-
Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma
-
Jensen K.D., et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 2008, 29:90-100.
-
(2008)
Immunity
, vol.29
, pp. 90-100
-
-
Jensen, K.D.1
-
38
-
-
62849124659
-
CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets
-
Ribot J.C., et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat. Immunol. 2009, 10:427-436.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 427-436
-
-
Ribot, J.C.1
-
39
-
-
0346496018
-
An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells
-
Eberl G., et al. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 2004, 5:64-73.
-
(2004)
Nat. Immunol.
, vol.5
, pp. 64-73
-
-
Eberl, G.1
-
40
-
-
57849131584
-
Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells
-
Cupedo T., et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol. 2009, 10:66-74.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 66-74
-
-
Cupedo, T.1
-
41
-
-
68249137286
-
Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity
-
Colonna M. Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity 2009, 31:15-23.
-
(2009)
Immunity
, vol.31
, pp. 15-23
-
-
Colonna, M.1
-
42
-
-
78751706261
-
CD4(+) Lymphoid tissue-inducer cells promote innate immunity in the gut
-
Sonnenberg G.F., et al. CD4(+) Lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 2010, 34:122-134.
-
(2010)
Immunity
, vol.34
, pp. 122-134
-
-
Sonnenberg, G.F.1
-
43
-
-
7644235586
-
The lymphotoxin-beta receptor is critical for control of murine Citrobacter rodentium-induced colitis
-
Spahn T.W., et al. The lymphotoxin-beta receptor is critical for control of murine Citrobacter rodentium-induced colitis. Gastroenterology 2004, 127:1463-1473.
-
(2004)
Gastroenterology
, vol.127
, pp. 1463-1473
-
-
Spahn, T.W.1
-
44
-
-
77950022870
-
Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection
-
Wang Y., et al. Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. Immunity 2010, 32:403-413.
-
(2010)
Immunity
, vol.32
, pp. 403-413
-
-
Wang, Y.1
-
45
-
-
80052966918
-
IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium
-
Ota N., et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat. Immunol. 2011, 12:941-948.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 941-948
-
-
Ota, N.1
-
46
-
-
79960500206
-
Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge
-
Tumanov A.V., et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 2011, 10:44-53.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 44-53
-
-
Tumanov, A.V.1
-
47
-
-
77149126766
-
The natural cytotoxicity receptor NKp46 is dispensable for IL-22-mediated innate intestinal immune defense against Citrobacter rodentium
-
Satoh-Takayama N., et al. The natural cytotoxicity receptor NKp46 is dispensable for IL-22-mediated innate intestinal immune defense against Citrobacter rodentium. J. Immunol. 2009, 183:6579-6587.
-
(2009)
J. Immunol.
, vol.183
, pp. 6579-6587
-
-
Satoh-Takayama, N.1
-
48
-
-
78049385155
-
Lineage relationship analysis of RORgammat+ innate lymphoid cells
-
Sawa S., et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science (New York, N.Y) 2010, 330:665-669.
-
(2010)
Science (New York, N.Y)
, vol.330
, pp. 665-669
-
-
Sawa, S.1
-
49
-
-
66849089729
-
Unleashing the therapeutic potential of NOD-like receptors
-
Geddes K., et al. Unleashing the therapeutic potential of NOD-like receptors. Nat. Rev. Drug Discov. 2009, 8:465-479.
-
(2009)
Nat. Rev. Drug Discov.
, vol.8
, pp. 465-479
-
-
Geddes, K.1
-
50
-
-
61949472508
-
Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation
-
Torchinsky M.B., et al. Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 2009, 458:78-82.
-
(2009)
Nature
, vol.458
, pp. 78-82
-
-
Torchinsky, M.B.1
-
51
-
-
69549108298
-
Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection
-
Robinson M.J., et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 2009, 206:2037-2051.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 2037-2051
-
-
Robinson, M.J.1
-
52
-
-
68649126866
-
Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals
-
Martin B., et al. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 2009, 31:321-330.
-
(2009)
Immunity
, vol.31
, pp. 321-330
-
-
Martin, B.1
-
53
-
-
77955499820
-
TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa
-
Van Maele L., et al. TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa. J. Immunol. 2010, 185:1177-1185.
-
(2010)
J. Immunol.
, vol.185
, pp. 1177-1185
-
-
Van Maele, L.1
-
54
-
-
70049112374
-
A MyD88-dependent early IL-17 production protects mice against airway infection with the obligate intracellular pathogen Chlamydia muridarum
-
Zhang X., et al. A MyD88-dependent early IL-17 production protects mice against airway infection with the obligate intracellular pathogen Chlamydia muridarum. J. Immunol. 2009, 183:1291-1300.
-
(2009)
J. Immunol.
, vol.183
, pp. 1291-1300
-
-
Zhang, X.1
-
55
-
-
40749120555
-
The myeloid differentiation factor 88 (MyD88) is required for CD4+ T cell effector function in a murine model of inflammatory bowel disease
-
Fukata M., et al. The myeloid differentiation factor 88 (MyD88) is required for CD4+ T cell effector function in a murine model of inflammatory bowel disease. J. Immunol. 2008, 180:1886-1894.
-
(2008)
J. Immunol.
, vol.180
, pp. 1886-1894
-
-
Fukata, M.1
-
56
-
-
38849189905
-
MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis
-
Gibson D.L., et al. MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis. Cell. Microbiol. 2008, 10:618-631.
-
(2008)
Cell. Microbiol.
, vol.10
, pp. 618-631
-
-
Gibson, D.L.1
-
57
-
-
34250814435
-
TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium
-
Lebeis S.L., et al. TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium. J. Immunol. 2007, 179:566-577.
-
(2007)
J. Immunol.
, vol.179
, pp. 566-577
-
-
Lebeis, S.L.1
-
58
-
-
40149084641
-
Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity
-
LeBlanc P.M., et al. Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe 2008, 3:146-157.
-
(2008)
Cell Host Microbe
, vol.3
, pp. 146-157
-
-
LeBlanc, P.M.1
-
59
-
-
79956319462
-
The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes
-
Kim Y.G., et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 2011, 34:769-780.
-
(2011)
Immunity
, vol.34
, pp. 769-780
-
-
Kim, Y.G.1
-
60
-
-
69149087051
-
NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha-toxin-dependent innate immune activation
-
Hruz P., et al. NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha-toxin-dependent innate immune activation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:12873-12878.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 12873-12878
-
-
Hruz, P.1
-
61
-
-
35348948374
-
Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells
-
van Beelen A.J., et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 2007, 27:660-669.
-
(2007)
Immunity
, vol.27
, pp. 660-669
-
-
van Beelen, A.J.1
-
62
-
-
34247254780
-
Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity
-
Fritz J.H., et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 2007, 26:445-459.
-
(2007)
Immunity
, vol.26
, pp. 445-459
-
-
Fritz, J.H.1
-
63
-
-
71849108536
-
Nod2-dependent Th2 polarization of antigen-specific immunity
-
Magalhaes J.G., et al. Nod2-dependent Th2 polarization of antigen-specific immunity. J. Immunol. 2008, 181:7925-7935.
-
(2008)
J. Immunol.
, vol.181
, pp. 7925-7935
-
-
Magalhaes, J.G.1
-
64
-
-
78751690657
-
Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity
-
Shaw P.J., et al. Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity. Immunity 2011, 34:75-84.
-
(2011)
Immunity
, vol.34
, pp. 75-84
-
-
Shaw, P.J.1
-
65
-
-
80052556040
-
Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation
-
Magalhaes J.G., et al. Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14896-14901.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14896-14901
-
-
Magalhaes, J.G.1
-
66
-
-
77956397771
-
Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis
-
Dunne A., et al. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J. Immunol. 2010, 185:1711-1719.
-
(2010)
J. Immunol.
, vol.185
, pp. 1711-1719
-
-
Dunne, A.1
-
67
-
-
79956215858
-
Escherichia coli heat-labile enterotoxin promotes protective Th17 responses against infection by driving innate IL-1 and IL-23 production
-
Brereton C.F., et al. Escherichia coli heat-labile enterotoxin promotes protective Th17 responses against infection by driving innate IL-1 and IL-23 production. J. Immunol. 2011, 186:5896-5906.
-
(2011)
J. Immunol.
, vol.186
, pp. 5896-5906
-
-
Brereton, C.F.1
-
68
-
-
44349124113
-
The genetics and immunopathogenesis of inflammatory bowel disease
-
Cho J.H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. 2008, 8:458-466.
-
(2008)
Nat. Rev.
, vol.8
, pp. 458-466
-
-
Cho, J.H.1
-
69
-
-
79952986650
-
RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
-
Sawa S., et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 2011, 12:320-326.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 320-326
-
-
Sawa, S.1
-
70
-
-
53349120339
-
Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine
-
Zaph C., et al. Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J. Exp. Med. 2008, 205:2191-2198.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 2191-2198
-
-
Zaph, C.1
-
71
-
-
80054020840
-
Peripheral education of the immune system by colonic commensal microbiota
-
Lathrop S.K., et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011, 478:250-254.
-
(2011)
Nature
, vol.478
, pp. 250-254
-
-
Lathrop, S.K.1
|