메뉴 건너뛰기




Volumn 33, Issue 3, 2012, Pages 112-118

Innate IL-17 and IL-22 responses to enteric bacterial pathogens

Author keywords

[No Author keywords available]

Indexed keywords

INTERLEUKIN 17; INTERLEUKIN 17 RECEPTOR; INTERLEUKIN 17F; INTERLEUKIN 1BETA; INTERLEUKIN 22; INTERLEUKIN 23; INTERLEUKIN 6; NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN LIKE RECEPTOR; PATTERN RECOGNITION RECEPTOR; POLYPEPTIDE ANTIBIOTIC AGENT;

EID: 84857671575     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2012.01.003     Document Type: Review
Times cited : (83)

References (71)
  • 1
    • 61949463911 scopus 로고    scopus 로고
    • IL-17 and Th17 Cells
    • Korn T., et al. IL-17 and Th17 Cells. Ann. Rev. Immunol. 2009, 27:485-517.
    • (2009) Ann. Rev. Immunol. , vol.27 , pp. 485-517
    • Korn, T.1
  • 2
    • 33748588423 scopus 로고    scopus 로고
    • The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells
    • Ivanov I.I., et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006, 126:1121-1133.
    • (2006) Cell , vol.126 , pp. 1121-1133
    • Ivanov, I.I.1
  • 3
    • 73349101421 scopus 로고    scopus 로고
    • Tc17 CD8 T cells: functional plasticity and subset diversity
    • Yen H.R., et al. Tc17 CD8 T cells: functional plasticity and subset diversity. J. Immunol. 2009, 183:7161-7168.
    • (2009) J. Immunol. , vol.183 , pp. 7161-7168
    • Yen, H.R.1
  • 4
    • 60549102720 scopus 로고    scopus 로고
    • Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22
    • Takatori H., et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 2009, 206:35-41.
    • (2009) J. Exp. Med. , vol.206 , pp. 35-41
    • Takatori, H.1
  • 5
    • 77951878587 scopus 로고    scopus 로고
    • Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology
    • Buonocore S., et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 2010, 464:1371-1375.
    • (2010) Nature , vol.464 , pp. 1371-1375
    • Buonocore, S.1
  • 6
    • 59649099774 scopus 로고    scopus 로고
    • A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity
    • Cella M., et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009, 457:722-725.
    • (2009) Nature , vol.457 , pp. 722-725
    • Cella, M.1
  • 7
    • 57849145994 scopus 로고    scopus 로고
    • Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin
    • Luci C., et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 2009, 10:75-82.
    • (2009) Nat. Immunol. , vol.10 , pp. 75-82
    • Luci, C.1
  • 8
    • 57849117363 scopus 로고    scopus 로고
    • RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
    • Sanos S.L., et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 2009, 10:83-91.
    • (2009) Nat. Immunol. , vol.10 , pp. 83-91
    • Sanos, S.L.1
  • 9
    • 57449118239 scopus 로고    scopus 로고
    • Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
    • Satoh-Takayama N., et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008, 29:958-970.
    • (2008) Immunity , vol.29 , pp. 958-970
    • Satoh-Takayama, N.1
  • 10
    • 79251578351 scopus 로고    scopus 로고
    • Cutting edge: crucial role of IL-1 and IL-23 in the innate IL-17 response of peripheral lymph node NK1.1- invariant NKT cells to bacteria
    • Doisne J.M., et al. Cutting edge: crucial role of IL-1 and IL-23 in the innate IL-17 response of peripheral lymph node NK1.1- invariant NKT cells to bacteria. J. Immunol. 2011, 186:662-666.
    • (2011) J. Immunol. , vol.186 , pp. 662-666
    • Doisne, J.M.1
  • 11
    • 79955612071 scopus 로고    scopus 로고
    • Mucosal-associated invariant T cells: unconventional development and function
    • Le Bourhis L., et al. Mucosal-associated invariant T cells: unconventional development and function. Trends Immunol. 2011, 32:212-218.
    • (2011) Trends Immunol. , vol.32 , pp. 212-218
    • Le Bourhis, L.1
  • 12
    • 77954143695 scopus 로고    scopus 로고
    • Innate IL-17-producing cells: the sentinels of the immune system
    • Cua D.J., Tato C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 2010, 10:479-489.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 479-489
    • Cua, D.J.1    Tato, C.M.2
  • 13
    • 79955030498 scopus 로고    scopus 로고
    • Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22
    • Sonnenberg G.F., et al. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 2011, 12:383-390.
    • (2011) Nat. Immunol. , vol.12 , pp. 383-390
    • Sonnenberg, G.F.1
  • 14
    • 77449147324 scopus 로고    scopus 로고
    • Th17 cells in mucosal immunity and tissue inflammation
    • Kolls J.K. Th17 cells in mucosal immunity and tissue inflammation. Semin. Immunopathol. 2010, 32:1-2.
    • (2010) Semin. Immunopathol. , vol.32 , pp. 1-2
    • Kolls, J.K.1
  • 15
    • 79959201412 scopus 로고    scopus 로고
    • Human nutrition, the gut microbiome and the immune system
    • Kau A.L., et al. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474:327-336.
    • (2011) Nature , vol.474 , pp. 327-336
    • Kau, A.L.1
  • 16
    • 53649100675 scopus 로고    scopus 로고
    • ATP drives lamina propria T(H)17 cell differentiation
    • Atarashi K., et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008, 455:808-812.
    • (2008) Nature , vol.455 , pp. 808-812
    • Atarashi, K.1
  • 17
    • 79960131814 scopus 로고    scopus 로고
    • Identification of an innate T helper type 17 response to intestinal bacterial pathogens
    • Geddes K., et al. Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat. Med. 2011, 17:837-844.
    • (2011) Nat. Med. , vol.17 , pp. 837-844
    • Geddes, K.1
  • 18
    • 53349173070 scopus 로고    scopus 로고
    • Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine
    • Ivanov I.I., et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 2008, 4:337-349.
    • (2008) Cell Host Microbe , vol.4 , pp. 337-349
    • Ivanov, I.I.1
  • 19
    • 70350343544 scopus 로고    scopus 로고
    • Induction of intestinal Th17 cells by segmented filamentous bacteria
    • Ivanov I.I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485-498.
    • (2009) Cell , vol.139 , pp. 485-498
    • Ivanov, I.I.1
  • 20
    • 70349742524 scopus 로고    scopus 로고
    • The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
    • Gaboriau-Routhiau V., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677-689.
    • (2009) Immunity , vol.31 , pp. 677-689
    • Gaboriau-Routhiau, V.1
  • 21
    • 74049122536 scopus 로고    scopus 로고
    • Enteric defensins are essential regulators of intestinal microbial ecology
    • Salzman N.H., et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 2010, 11:76-83.
    • (2010) Nat. Immunol. , vol.11 , pp. 76-83
    • Salzman, N.H.1
  • 22
    • 81255158786 scopus 로고    scopus 로고
    • IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens
    • Song X., et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat. Immunol. 2011, 12:1151-1158.
    • (2011) Nat. Immunol. , vol.12 , pp. 1151-1158
    • Song, X.1
  • 23
    • 40049083827 scopus 로고    scopus 로고
    • Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
    • Zheng Y., et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 2008, 14:282-289.
    • (2008) Nat. Med. , vol.14 , pp. 282-289
    • Zheng, Y.1
  • 24
    • 58149231532 scopus 로고    scopus 로고
    • Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses
    • Ishigame H., et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 2009, 30:108-119.
    • (2009) Immunity , vol.30 , pp. 108-119
    • Ishigame, H.1
  • 25
    • 59849114998 scopus 로고    scopus 로고
    • RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F
    • Leppkes M., et al. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 2009, 136:257-267.
    • (2009) Gastroenterology , vol.136 , pp. 257-267
    • Leppkes, M.1
  • 26
    • 45549097533 scopus 로고    scopus 로고
    • IL-6-dependent mucosal protection prevents establishment of a microbial niche for attaching/effacing lesion-forming enteric bacterial pathogens
    • Dann S.M., et al. IL-6-dependent mucosal protection prevents establishment of a microbial niche for attaching/effacing lesion-forming enteric bacterial pathogens. J. Immunol. 2008, 180:6816-6826.
    • (2008) J. Immunol. , vol.180 , pp. 6816-6826
    • Dann, S.M.1
  • 27
    • 33646560950 scopus 로고    scopus 로고
    • Transforming growth factor-beta induces development of the T(H)17 lineage
    • Mangan P.R., et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006, 441:231-234.
    • (2006) Nature , vol.441 , pp. 231-234
    • Mangan, P.R.1
  • 28
    • 65549099573 scopus 로고    scopus 로고
    • Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine
    • Raffatellu M., et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 2009, 5:476-486.
    • (2009) Cell Host Microbe , vol.5 , pp. 476-486
    • Raffatellu, M.1
  • 29
    • 78649957904 scopus 로고    scopus 로고
    • Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model
    • Geddes K., et al. Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model. Infect. Immun. 2010, 78:5107-5115.
    • (2010) Infect. Immun. , vol.78 , pp. 5107-5115
    • Geddes, K.1
  • 30
    • 79961120860 scopus 로고    scopus 로고
    • Early MyD88-dependent induction of interleukin-17A expression during Salmonella colitis
    • Keestra A.M., et al. Early MyD88-dependent induction of interleukin-17A expression during Salmonella colitis. Infect. Immun. 2011, 79:3131-3140.
    • (2011) Infect. Immun. , vol.79 , pp. 3131-3140
    • Keestra, A.M.1
  • 31
    • 58449115208 scopus 로고    scopus 로고
    • Interleukin-23 orchestrates mucosal responses to Salmonella enterica serotype Typhimurium in the intestine
    • Godinez I., et al. Interleukin-23 orchestrates mucosal responses to Salmonella enterica serotype Typhimurium in the intestine. Infect. Immun. 2009, 77:387-398.
    • (2009) Infect. Immun. , vol.77 , pp. 387-398
    • Godinez, I.1
  • 32
    • 41849142985 scopus 로고    scopus 로고
    • Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut
    • Raffatellu M., et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat. Med. 2008, 14:421-428.
    • (2008) Nat. Med. , vol.14 , pp. 421-428
    • Raffatellu, M.1
  • 33
    • 69449106110 scopus 로고    scopus 로고
    • IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells
    • Guo L., et al. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:13463-13468.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 13463-13468
    • Guo, L.1
  • 34
    • 79956116032 scopus 로고    scopus 로고
    • RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation
    • Codarri L., et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 2011, 12:560-567.
    • (2011) Nat. Immunol. , vol.12 , pp. 560-567
    • Codarri, L.1
  • 35
    • 79956152607 scopus 로고    scopus 로고
    • The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF
    • El-Behi M., et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 2011, 12:568-575.
    • (2011) Nat. Immunol. , vol.12 , pp. 568-575
    • El-Behi, M.1
  • 36
    • 79960919901 scopus 로고    scopus 로고
    • Control of TH17 cells occurs in the small intestine
    • Esplugues E., et al. Control of TH17 cells occurs in the small intestine. Nature 2011, 475:514-518.
    • (2011) Nature , vol.475 , pp. 514-518
    • Esplugues, E.1
  • 37
    • 46749113368 scopus 로고    scopus 로고
    • Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma
    • Jensen K.D., et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 2008, 29:90-100.
    • (2008) Immunity , vol.29 , pp. 90-100
    • Jensen, K.D.1
  • 38
    • 62849124659 scopus 로고    scopus 로고
    • CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets
    • Ribot J.C., et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat. Immunol. 2009, 10:427-436.
    • (2009) Nat. Immunol. , vol.10 , pp. 427-436
    • Ribot, J.C.1
  • 39
    • 0346496018 scopus 로고    scopus 로고
    • An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells
    • Eberl G., et al. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 2004, 5:64-73.
    • (2004) Nat. Immunol. , vol.5 , pp. 64-73
    • Eberl, G.1
  • 40
    • 57849131584 scopus 로고    scopus 로고
    • Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells
    • Cupedo T., et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol. 2009, 10:66-74.
    • (2009) Nat. Immunol. , vol.10 , pp. 66-74
    • Cupedo, T.1
  • 41
    • 68249137286 scopus 로고    scopus 로고
    • Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity
    • Colonna M. Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity 2009, 31:15-23.
    • (2009) Immunity , vol.31 , pp. 15-23
    • Colonna, M.1
  • 42
    • 78751706261 scopus 로고    scopus 로고
    • CD4(+) Lymphoid tissue-inducer cells promote innate immunity in the gut
    • Sonnenberg G.F., et al. CD4(+) Lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 2010, 34:122-134.
    • (2010) Immunity , vol.34 , pp. 122-134
    • Sonnenberg, G.F.1
  • 43
    • 7644235586 scopus 로고    scopus 로고
    • The lymphotoxin-beta receptor is critical for control of murine Citrobacter rodentium-induced colitis
    • Spahn T.W., et al. The lymphotoxin-beta receptor is critical for control of murine Citrobacter rodentium-induced colitis. Gastroenterology 2004, 127:1463-1473.
    • (2004) Gastroenterology , vol.127 , pp. 1463-1473
    • Spahn, T.W.1
  • 44
    • 77950022870 scopus 로고    scopus 로고
    • Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection
    • Wang Y., et al. Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. Immunity 2010, 32:403-413.
    • (2010) Immunity , vol.32 , pp. 403-413
    • Wang, Y.1
  • 45
    • 80052966918 scopus 로고    scopus 로고
    • IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium
    • Ota N., et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat. Immunol. 2011, 12:941-948.
    • (2011) Nat. Immunol. , vol.12 , pp. 941-948
    • Ota, N.1
  • 46
    • 79960500206 scopus 로고    scopus 로고
    • Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge
    • Tumanov A.V., et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 2011, 10:44-53.
    • (2011) Cell Host Microbe , vol.10 , pp. 44-53
    • Tumanov, A.V.1
  • 47
    • 77149126766 scopus 로고    scopus 로고
    • The natural cytotoxicity receptor NKp46 is dispensable for IL-22-mediated innate intestinal immune defense against Citrobacter rodentium
    • Satoh-Takayama N., et al. The natural cytotoxicity receptor NKp46 is dispensable for IL-22-mediated innate intestinal immune defense against Citrobacter rodentium. J. Immunol. 2009, 183:6579-6587.
    • (2009) J. Immunol. , vol.183 , pp. 6579-6587
    • Satoh-Takayama, N.1
  • 48
    • 78049385155 scopus 로고    scopus 로고
    • Lineage relationship analysis of RORgammat+ innate lymphoid cells
    • Sawa S., et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science (New York, N.Y) 2010, 330:665-669.
    • (2010) Science (New York, N.Y) , vol.330 , pp. 665-669
    • Sawa, S.1
  • 49
    • 66849089729 scopus 로고    scopus 로고
    • Unleashing the therapeutic potential of NOD-like receptors
    • Geddes K., et al. Unleashing the therapeutic potential of NOD-like receptors. Nat. Rev. Drug Discov. 2009, 8:465-479.
    • (2009) Nat. Rev. Drug Discov. , vol.8 , pp. 465-479
    • Geddes, K.1
  • 50
    • 61949472508 scopus 로고    scopus 로고
    • Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation
    • Torchinsky M.B., et al. Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 2009, 458:78-82.
    • (2009) Nature , vol.458 , pp. 78-82
    • Torchinsky, M.B.1
  • 51
    • 69549108298 scopus 로고    scopus 로고
    • Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection
    • Robinson M.J., et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 2009, 206:2037-2051.
    • (2009) J. Exp. Med. , vol.206 , pp. 2037-2051
    • Robinson, M.J.1
  • 52
    • 68649126866 scopus 로고    scopus 로고
    • Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals
    • Martin B., et al. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 2009, 31:321-330.
    • (2009) Immunity , vol.31 , pp. 321-330
    • Martin, B.1
  • 53
    • 77955499820 scopus 로고    scopus 로고
    • TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa
    • Van Maele L., et al. TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa. J. Immunol. 2010, 185:1177-1185.
    • (2010) J. Immunol. , vol.185 , pp. 1177-1185
    • Van Maele, L.1
  • 54
    • 70049112374 scopus 로고    scopus 로고
    • A MyD88-dependent early IL-17 production protects mice against airway infection with the obligate intracellular pathogen Chlamydia muridarum
    • Zhang X., et al. A MyD88-dependent early IL-17 production protects mice against airway infection with the obligate intracellular pathogen Chlamydia muridarum. J. Immunol. 2009, 183:1291-1300.
    • (2009) J. Immunol. , vol.183 , pp. 1291-1300
    • Zhang, X.1
  • 55
    • 40749120555 scopus 로고    scopus 로고
    • The myeloid differentiation factor 88 (MyD88) is required for CD4+ T cell effector function in a murine model of inflammatory bowel disease
    • Fukata M., et al. The myeloid differentiation factor 88 (MyD88) is required for CD4+ T cell effector function in a murine model of inflammatory bowel disease. J. Immunol. 2008, 180:1886-1894.
    • (2008) J. Immunol. , vol.180 , pp. 1886-1894
    • Fukata, M.1
  • 56
    • 38849189905 scopus 로고    scopus 로고
    • MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis
    • Gibson D.L., et al. MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis. Cell. Microbiol. 2008, 10:618-631.
    • (2008) Cell. Microbiol. , vol.10 , pp. 618-631
    • Gibson, D.L.1
  • 57
    • 34250814435 scopus 로고    scopus 로고
    • TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium
    • Lebeis S.L., et al. TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium. J. Immunol. 2007, 179:566-577.
    • (2007) J. Immunol. , vol.179 , pp. 566-577
    • Lebeis, S.L.1
  • 58
    • 40149084641 scopus 로고    scopus 로고
    • Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity
    • LeBlanc P.M., et al. Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe 2008, 3:146-157.
    • (2008) Cell Host Microbe , vol.3 , pp. 146-157
    • LeBlanc, P.M.1
  • 59
    • 79956319462 scopus 로고    scopus 로고
    • The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes
    • Kim Y.G., et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 2011, 34:769-780.
    • (2011) Immunity , vol.34 , pp. 769-780
    • Kim, Y.G.1
  • 60
    • 69149087051 scopus 로고    scopus 로고
    • NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha-toxin-dependent innate immune activation
    • Hruz P., et al. NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha-toxin-dependent innate immune activation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:12873-12878.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 12873-12878
    • Hruz, P.1
  • 61
    • 35348948374 scopus 로고    scopus 로고
    • Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells
    • van Beelen A.J., et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 2007, 27:660-669.
    • (2007) Immunity , vol.27 , pp. 660-669
    • van Beelen, A.J.1
  • 62
    • 34247254780 scopus 로고    scopus 로고
    • Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity
    • Fritz J.H., et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 2007, 26:445-459.
    • (2007) Immunity , vol.26 , pp. 445-459
    • Fritz, J.H.1
  • 63
    • 71849108536 scopus 로고    scopus 로고
    • Nod2-dependent Th2 polarization of antigen-specific immunity
    • Magalhaes J.G., et al. Nod2-dependent Th2 polarization of antigen-specific immunity. J. Immunol. 2008, 181:7925-7935.
    • (2008) J. Immunol. , vol.181 , pp. 7925-7935
    • Magalhaes, J.G.1
  • 64
    • 78751690657 scopus 로고    scopus 로고
    • Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity
    • Shaw P.J., et al. Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity. Immunity 2011, 34:75-84.
    • (2011) Immunity , vol.34 , pp. 75-84
    • Shaw, P.J.1
  • 65
    • 80052556040 scopus 로고    scopus 로고
    • Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation
    • Magalhaes J.G., et al. Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14896-14901.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14896-14901
    • Magalhaes, J.G.1
  • 66
    • 77956397771 scopus 로고    scopus 로고
    • Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis
    • Dunne A., et al. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J. Immunol. 2010, 185:1711-1719.
    • (2010) J. Immunol. , vol.185 , pp. 1711-1719
    • Dunne, A.1
  • 67
    • 79956215858 scopus 로고    scopus 로고
    • Escherichia coli heat-labile enterotoxin promotes protective Th17 responses against infection by driving innate IL-1 and IL-23 production
    • Brereton C.F., et al. Escherichia coli heat-labile enterotoxin promotes protective Th17 responses against infection by driving innate IL-1 and IL-23 production. J. Immunol. 2011, 186:5896-5906.
    • (2011) J. Immunol. , vol.186 , pp. 5896-5906
    • Brereton, C.F.1
  • 68
    • 44349124113 scopus 로고    scopus 로고
    • The genetics and immunopathogenesis of inflammatory bowel disease
    • Cho J.H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. 2008, 8:458-466.
    • (2008) Nat. Rev. , vol.8 , pp. 458-466
    • Cho, J.H.1
  • 69
    • 79952986650 scopus 로고    scopus 로고
    • RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
    • Sawa S., et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 2011, 12:320-326.
    • (2011) Nat. Immunol. , vol.12 , pp. 320-326
    • Sawa, S.1
  • 70
    • 53349120339 scopus 로고    scopus 로고
    • Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine
    • Zaph C., et al. Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J. Exp. Med. 2008, 205:2191-2198.
    • (2008) J. Exp. Med. , vol.205 , pp. 2191-2198
    • Zaph, C.1
  • 71
    • 80054020840 scopus 로고    scopus 로고
    • Peripheral education of the immune system by colonic commensal microbiota
    • Lathrop S.K., et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011, 478:250-254.
    • (2011) Nature , vol.478 , pp. 250-254
    • Lathrop, S.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.