메뉴 건너뛰기




Volumn 26, Issue 8, 2010, Pages 1064-1072

Inferring dynamic gene networks under varying conditions for transcriptomic network comparison

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; DNA MICROARRAY; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; GENETICS; HUMAN; METHODOLOGY; TUMOR CELL LINE;

EID: 77951967380     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btq080     Document Type: Article
Times cited : (11)

References (29)
  • 1
    • 0036013593 scopus 로고    scopus 로고
    • Statistical mechanics of complex networks
    • Albert,R. and Barabási,A.-L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys., 74, 47-97.
    • (2002) Rev. Mod. Phys. , vol.74 , pp. 47-97
    • Albert, R.1    Barabási, A.-L.2
  • 2
    • 8844271685 scopus 로고    scopus 로고
    • Faster cyclic loess: normalizing RNA arrays via linear models
    • Ballman,K.V. et al. (2004) Faster cyclic loess: normalizing RNA arrays via linear models. Bioinformatics, 20, 2778-2786.
    • (2004) Bioinformatics , vol.20 , pp. 2778-2786
    • Ballman, K.V.1
  • 3
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal,M. et al. (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics, 22, 815-822.
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1
  • 4
    • 16844376909 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks in human B cells
    • Basso,K. et al. (2005) Reverse engineering of regulatory networks in human B cells. Nat. Genet., 37, 382-390.
    • (2005) Nat. Genet. , vol.37 , pp. 382-390
    • Basso, K.1
  • 5
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverseengineering and modeling approaches
    • Cantone,I. et al. (2009) A yeast synthetic network for in vivo assessment of reverseengineering and modeling approaches. Cell, 137, 172-181.
    • (2009) Cell , vol.137 , pp. 172-181
    • Cantone, I.1
  • 6
    • 0032611513 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations
    • Chen,T. et al. (1999) Modeling gene expression with differential equations. Pac. Symp. Biocomput., 4, 29-40.
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 29-40
    • Chen, T.1
  • 7
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is NP-hard
    • Chickering,D.M. et al. (2004) Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res., 5, 1287-1330.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1287-1330
    • Chickering, D.M.1
  • 8
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • Faith,J.J. et al. (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol., 5, e8.
    • (2007) PLoS Biol. , vol.5
    • Faith, J.J.1
  • 9
    • 33745947404 scopus 로고    scopus 로고
    • Model selection for incomplete and design-based samples
    • Hens,H. et al. (2006) Model selection for incomplete and design-based samples. Stat. Med., 25, 2502-2520.
    • (2006) Stat. Med. , vol.25 , pp. 2502-2520
    • Hens, H.1
  • 10
    • 41349101972 scopus 로고    scopus 로고
    • Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
    • Hirose,O. et al. (2008) Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics, 24, 932-942.
    • (2008) Bioinformatics , vol.24 , pp. 932-942
    • Hirose, O.1
  • 11
    • 0003419145 scopus 로고
    • PhD Thesis, Department of Statistics, the University of British Columbia, British Columbia, Canada
    • Hu,F. (1994) Relevance weighted smoothing and a new bootstrap method. PhD Thesis, Department of Statistics, the University of British Columbia, British Columbia, Canada.
    • (1994) Relevance weighted smoothing and a new bootstrap method
    • Hu, F.1
  • 12
    • 0036763177 scopus 로고    scopus 로고
    • The weighted likelihood
    • Hu,F. and Zidek,J. (2002) The weighted likelihood. Can. J. Stat., 30, 347-371.
    • (2002) Can. J. Stat. , vol.30 , pp. 347-371
    • Hu, F.1    Zidek, J.2
  • 13
    • 77954653646 scopus 로고    scopus 로고
    • Astate space representation of VAR models with sparse learning for dynamic gene networks
    • Kojima,K. et al. (2009)Astate space representation of VAR models with sparse learning for dynamic gene networks. Genome Inform., 22, 56-68.
    • (2009) Genome Inform. , vol.22 , pp. 56-68
    • Kojima, K.1
  • 14
    • 33644877426 scopus 로고    scopus 로고
    • TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations
    • Krull,M. et al. (2006) TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations. NucleicAcid Res., 34(Database issue), 546-551.
    • (2006) NucleicAcid Res. , vol.34 , Issue.DATABASE ISSUE , pp. 546-551
    • Krull, M.1
  • 15
    • 84866934189 scopus 로고    scopus 로고
    • Inferring dynamic genetic networks with low order independencies
    • Lébre,S. (2009) Inferring dynamic genetic networks with low order independencies. Stat. Appl. Genet. Mol. Biol., 8,9.
    • (2009) Stat. Appl. Genet. Mol. Biol. , vol.8 , pp. 9
    • Lébre, S.1
  • 16
    • 36248999573 scopus 로고    scopus 로고
    • Information-theoretic inference of large transcriptional regulatory networks
    • Meyer,P.E. et al. (2007a) Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinform. Syst. Biol., 2007, 79879.
    • (2007) EURASIP J. Bioinform. Syst. Biol. , vol.2007 , pp. 79879
    • Meyer, P.E.1
  • 17
    • 59949086432 scopus 로고    scopus 로고
    • minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information
    • Meyer,P.E. et al. (2007b) minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics, 9, 461.
    • (2007) BMC Bioinformatics , vol.9 , pp. 461
    • Meyer, P.E.1
  • 18
    • 48249136945 scopus 로고    scopus 로고
    • Systematic reconstruction of TRANSPATH data into cell system markup language
    • Nagasaki,N. et al. (2008) Systematic reconstruction of TRANSPATH data into cell system markup language. BMC Syst. Biol., 2, 53.
    • (2008) BMC Syst. Biol. , vol.2 , pp. 53
    • Nagasaki, N.1
  • 19
    • 33947547741 scopus 로고    scopus 로고
    • Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation
    • Nagashima,T. et al. (2007) Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation. J. Biol. Chem., 282, 40.
    • (2007) J. Biol. Chem. , vol.282 , pp. 40
    • Nagashima, T.1
  • 20
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • Opgen-Rhein,R., and Strimmer,K. (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol., 1, 37.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 21
    • 4143058645 scopus 로고    scopus 로고
    • Gene networks inference using dynamic Bayesian networks
    • Perrin,B.E. et al. (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19 (Suppl. 2), ii138-148.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Perrin, B.E.1
  • 22
    • 3142744689 scopus 로고    scopus 로고
    • Modeling T-cell activation using gene expression profiling and state-space models
    • Rangel,C. et al. (2004) Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics, 20, 1361-1372.
    • (2004) Bioinformatics , vol.20 , pp. 1361-1372
    • Rangel, C.1
  • 23
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schäfer,J., Strimmer,K. (2006) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754-764.
    • (2006) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 24
    • 66749164082 scopus 로고    scopus 로고
    • Recursive regularization for inferring gene networks from time-course gene expression profiles
    • Shimamura,T. et al. (2009) Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Syst. Biol., 3, 41.
    • (2009) BMC Syst. Biol. , vol.3 , pp. 41
    • Shimamura, T.1
  • 25
    • 61949220761 scopus 로고    scopus 로고
    • Unraveling dynamic activities of autoacine pathways that control drug-response transcriptome networks
    • Tamada,Y. et al. (2009) Unraveling dynamic activities of autoacine pathways that control drug-response transcriptome networks. Pac. Symp. Biocomput., 14, 251-263.
    • (2009) Pac. Symp. Biocomput. , vol.14 , pp. 251-263
    • Tamada, Y.1
  • 26
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani,R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 58, 267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 27
    • 0012070015 scopus 로고    scopus 로고
    • PhD Thesis, Department of Statistics, the University of British Columbia, British Columbia, Canada
    • Wang,S.X. (2001) Maximum weighted likelihood estimation. PhD Thesis, Department of Statistics, the University of British Columbia, British Columbia, Canada.
    • (2001) Maximum weighted likelihood estimation
    • Wang, S.X.1
  • 28
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou,H. and Hastie,T. (2005) Regularization and variable selection via the elastic net. J. R. Stat. Soc. B, 67, 301-320.
    • (2005) J. R. Stat. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 29
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the lasso
    • Zou,H. et al. (2007) On the "degrees of freedom" of the lasso. Ann. Statist., 35, 2173-2192.
    • (2007) Ann. Statist. , vol.35 , pp. 2173-2192
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.