메뉴 건너뛰기




Volumn 142, Issue 5, 2012, Pages 1114-1127

Clustering gene expression time course data using mixtures of multivariate t-distributions

Author keywords

Cholesky decomposition; Gene expression; Mixture models; Model based clustering; Multivariate t distributions; Time course data

Indexed keywords


EID: 84856019252     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jspi.2011.11.026     Document Type: Article
Times cited : (45)

References (39)
  • 1
    • 77958055170 scopus 로고    scopus 로고
    • Extending mixtures of multivariate t-factor analyzers
    • Andrews J.L., McNicholas P.D. Extending mixtures of multivariate t-factor analyzers. Statistics and Computing 2011, 21(3):361-373.
    • (2011) Statistics and Computing , vol.21 , Issue.3 , pp. 361-373
    • Andrews, J.L.1    McNicholas, P.D.2
  • 2
    • 78650198655 scopus 로고    scopus 로고
    • Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis
    • Andrews J.L., McNicholas P.D. Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis. Journal of Statistical Planning and Inference 2011, 141(4):1479-1486.
    • (2011) Journal of Statistical Planning and Inference , vol.141 , Issue.4 , pp. 1479-1486
    • Andrews, J.L.1    McNicholas, P.D.2
  • 7
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux G., Govaert G. Gaussian parsimonious clustering models. Pattern Recognition 1995, 28:781-793.
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 9
    • 4043061882 scopus 로고    scopus 로고
    • Variational Bayesian model selection for mixture distributions
    • Morgan Kaufmann, Los Altos, CA
    • Corduneanu A., Bishop C. Variational Bayesian model selection for mixture distributions. Artificial Intelligence and Statistics 2001, 27-34. Morgan Kaufmann, Los Altos, CA.
    • (2001) Artificial Intelligence and Statistics , pp. 27-34
    • Corduneanu, A.1    Bishop, C.2
  • 11
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C., Raftery A.E. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 2002, 97(458):611-631.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 13
    • 0003744821 scopus 로고    scopus 로고
    • The EM Algorithm for Factor Analyzers.
    • Technical Report CRG-TR-96-1, University Of Toronto, Toronto.
    • Ghahramani, Z., Hinton, G.E., 1997. The EM Algorithm for Factor Analyzers. Technical Report CRG-TR-96-1, University Of Toronto, Toronto.
    • (1997)
    • Ghahramani, Z.1    Hinton, G.E.2
  • 14
    • 0001230939 scopus 로고
    • A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample
    • Hosmer D.W. A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample. Biometrics 1973, 29(4):761-770.
    • (1973) Biometrics , vol.29 , Issue.4 , pp. 761-770
    • Hosmer, D.W.1
  • 16
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models. Sankhyā
    • Keribin C. Consistent estimation of the order of mixture models. Sankhyā. The Indian Journal of Statistics. Series A 2000, 62(1):49-66.
    • (2000) The Indian Journal of Statistics. Series A , vol.62 , Issue.1 , pp. 49-66
    • Keribin, C.1
  • 19
    • 21144475085 scopus 로고
    • Consistent estimation of a mixing distribution
    • Leroux B.G. Consistent estimation of a mixing distribution. The Annals of Statistics 1992, 20:1350-1360.
    • (1992) The Annals of Statistics , vol.20 , pp. 1350-1360
    • Leroux, B.G.1
  • 20
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with b-splines
    • Luan Y., Li H. Clustering of time-course gene expression data using a mixed-effects model with b-splines. Bioinformatics 2003, 19(4):474-482.
    • (2003) Bioinformatics , vol.19 , Issue.4 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 21
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • Ma P., Castillo-Davis C.I., Zhong W., Liu J. A data-driven clustering method for time course gene expression data. Nucleic Acids Research 2006, 34(4):1261-1269.
    • (2006) Nucleic Acids Research , vol.34 , Issue.4 , pp. 1261-1269
    • Ma, P.1    Castillo-Davis, C.I.2    Zhong, W.3    Liu, J.4
  • 22
    • 34247869715 scopus 로고    scopus 로고
    • Variational approximations in Bayesian model selection for finite mixture distributions
    • McGrory C.A., Titterington D.M. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics and Data Analysis 2007, 51:5352-5367.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 5352-5367
    • McGrory, C.A.1    Titterington, D.M.2
  • 24
    • 84947788012 scopus 로고    scopus 로고
    • Robust cluster analysis via mixtures of multivariate t-distributions
    • Springer-Verlag, Berlin
    • McLachlan G.J., Peel D. Robust cluster analysis via mixtures of multivariate t-distributions. Lecture Notes in Computer Science 1998, vol. 1451:658-666. Springer-Verlag, Berlin.
    • (1998) Lecture Notes in Computer Science , vol.1451 , pp. 658-666
    • McLachlan, G.J.1    Peel, D.2
  • 26
    • 74149093702 scopus 로고    scopus 로고
    • Model-based classification using latent Gaussian mixture models
    • McNicholas P.D. Model-based classification using latent Gaussian mixture models. Journal of Statistical Planning and Inference 2010, 140(5):1175-1181.
    • (2010) Journal of Statistical Planning and Inference , vol.140 , Issue.5 , pp. 1175-1181
    • McNicholas, P.D.1
  • 29
    • 77958504829 scopus 로고    scopus 로고
    • Model-based clustering of microarray expression data via latent Gaussian mixture models
    • McNicholas P.D., Murphy T.B. Model-based clustering of microarray expression data via latent Gaussian mixture models. Bioinformatics 2010, 26(21):2705-2712.
    • (2010) Bioinformatics , vol.26 , Issue.21 , pp. 2705-2712
    • McNicholas, P.D.1    Murphy, T.B.2
  • 30
    • 0028194848 scopus 로고
    • Control of meiotic gene expression in Saccharomyces cerevisiae
    • Mitchell A.P. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiological Reviews 1994, 58(1):56-70.
    • (1994) Microbiological Reviews , vol.58 , Issue.1 , pp. 56-70
    • Mitchell, A.P.1
  • 31
    • 0012806293 scopus 로고    scopus 로고
    • Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation
    • Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 1999, 86(3):677-690.
    • (1999) Biometrika , vol.86 , Issue.3 , pp. 677-690
    • Pourahmadi, M.1
  • 32
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 1971, 66:846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 33
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978, 6:461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 34
    • 84855998913 scopus 로고    scopus 로고
    • The Gene Ontology Consortium
    • Accessed August 18, 2010.
    • The Gene Ontology Consortium, 1999. The Gene Ontology Database. Accessed August 18, 2010.
    • (1999) The Gene Ontology Database.
  • 35
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • Tipping T.E., Bishop C.M. Mixtures of probabilistic principal component analysers. Neural Computation 1999, 11(2):443-482.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, T.E.1    Bishop, C.M.2
  • 37
    • 0036887504 scopus 로고    scopus 로고
    • Bayesian model search for mixture models based on optimizing variational bounds
    • Ueda N., Ghahramani Z. Bayesian model search for mixture models based on optimizing variational bounds. Neural Networks 2002, 15:1223-1241.
    • (2002) Neural Networks , vol.15 , pp. 1223-1241
    • Ueda, N.1    Ghahramani, Z.2
  • 38
    • 27744518228 scopus 로고    scopus 로고
    • Modelling gene expression over time: curve clustering with informative prior distributions
    • Oxford University Press
    • Wakefield J.C., Zhou C., Self S.G. Modelling gene expression over time: curve clustering with informative prior distributions. Bayesian Statistics 2003, vol. 7:721-732. Oxford University Press.
    • (2003) Bayesian Statistics , vol.7 , pp. 721-732
    • Wakefield, J.C.1    Zhou, C.2    Self, S.G.3
  • 39
    • 84856010395 scopus 로고    scopus 로고
    • GeneCards: The Human Gene Compendium.
    • Weizmann Institute of Science, Accessed February 9, 2011.
    • Weizmann Institute of Science, 1996. GeneCards: The Human Gene Compendium. Accessed February 9, 2011.
    • (1996)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.