메뉴 건너뛰기




Volumn 141, Issue 4, 2011, Pages 1479-1486

Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis

Author keywords

Classification; Clustering; Discriminant analysis; Mixture models; Model based; Modified factor analysis; Modified t factor analyzers; Modified t factors; T Factor analyzers; T Factors

Indexed keywords


EID: 78650198655     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jspi.2010.10.014     Document Type: Article
Times cited : (44)

References (47)
  • 1
  • 3
    • 77958055170 scopus 로고    scopus 로고
    • to appear. Extending mixtures of multivariate t-factor analyzers. Statistics and Computing, doi:.
    • Andrews, J.L., McNicholas, P.D., to appear. Extending mixtures of multivariate t-factor analyzers. Statistics and Computing, doi:. http://10.1007/s11222-010-9175-2.
    • Andrews, J.L.1    McNicholas, P.D.2
  • 5
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield J.D., Raftery A.E. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993, 49(3):803-821.
    • (1993) Biometrics , vol.49 , Issue.3 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 9
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux G., Govaert G. Gaussian parsimonious clustering models. Pattern Recognition 1995, 28:781-793.
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 10
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • Dasgupta A., Raftery A.E. Detecting features in spatial point processes with clutter via model-based clustering. Journal of the American Statistical Association 1998, 93:94-302.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 94-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 11
    • 33645061488 scopus 로고    scopus 로고
    • Using unlabelled data to update classification rules with applications in food authenticity studies
    • Dean N., Murphy T.B., Downey G. Using unlabelled data to update classification rules with applications in food authenticity studies. Journal of the Royal Statistical Society Series C 2006, 55(1):1-14.
    • (2006) Journal of the Royal Statistical Society Series C , vol.55 , Issue.1 , pp. 1-14
    • Dean, N.1    Murphy, T.B.2    Downey, G.3
  • 13
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Annals of Eugenics 1936, 7(2):179-188.
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 14
    • 0001757440 scopus 로고
    • Multivariate data analysis as a discriminating method of the origin of wines
    • Forina M., Armanino C., Castino M., Ubigli M. Multivariate data analysis as a discriminating method of the origin of wines. Vitis 1986, 25:189-201.
    • (1986) Vitis , vol.25 , pp. 189-201
    • Forina, M.1    Armanino, C.2    Castino, M.3    Ubigli, M.4
  • 15
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C., Raftery A.E. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 2002, 97(458):611-631.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 16
    • 78650198794 scopus 로고    scopus 로고
    • MCLUSTversion 3 for R: normal mixture modeling and model-based clustering, Technical Report 504, Department of Statistics, University of Washington. Minor revisions January 2007 and November 2007.
    • Fraley, C., Raftery, A.E., 2006. MCLUSTversion 3 for R: normal mixture modeling and model-based clustering, Technical Report 504, Department of Statistics, University of Washington. Minor revisions January 2007 and November 2007.
    • (2006)
    • Fraley, C.1    Raftery, A.E.2
  • 17
    • 78650196006 scopus 로고    scopus 로고
    • The EM algorithm for factor analyzers, Technical Report CRG-TR-96-1, University Of Toronto, Toronto.
    • Ghahramani, Z., Hinton, G.E., 1997. The EM algorithm for factor analyzers, Technical Report CRG-TR-96-1, University Of Toronto, Toronto.
    • (1997)
    • Ghahramani, Z.1    Hinton, G.E.2
  • 19
    • 33846360024 scopus 로고    scopus 로고
    • Finite mixtures of multivariate Poisson distributions with application
    • Karlis D., Meligkotsidou L. Finite mixtures of multivariate Poisson distributions with application. Journal of Statistical Planning and Inference 2007, 137(6):1942-1960.
    • (2007) Journal of Statistical Planning and Inference , vol.137 , Issue.6 , pp. 1942-1960
    • Karlis, D.1    Meligkotsidou, L.2
  • 20
    • 58149522265 scopus 로고    scopus 로고
    • Model-based clustering with non-elliptically contoured distributions
    • Karlis D., Santourian A. Model-based clustering with non-elliptically contoured distributions. Statistics and Computing 2009, 19:73-83.
    • (2009) Statistics and Computing , vol.19 , pp. 73-83
    • Karlis, D.1    Santourian, A.2
  • 24
    • 21144475085 scopus 로고
    • Consistent estimation of a mixing distribution
    • Leroux B.G. Consistent estimation of a mixing distribution. The Annals of Statistics 1992, 20:1350-1360.
    • (1992) The Annals of Statistics , vol.20 , pp. 1350-1360
    • Leroux, B.G.1
  • 25
    • 78650203821 scopus 로고
    • Mixture models: theory, geometry and applications, in: 'NSF-CBMS Regional Conference Series in Probability and Statistics', Institute of Mathematical Statistics, Hayward, California.
    • Lindsay, B.G., 1995. Mixture models: theory, geometry and applications, in: 'NSF-CBMS Regional Conference Series in Probability and Statistics', vol. 5. Institute of Mathematical Statistics, Hayward, California.
    • (1995) , vol.5
    • Lindsay, B.G.1
  • 27
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution
    • McLachlan G.J., Bean R.W., Jones L.B.-T. Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution. Computational Statistics and Data Analysis 2007, 51(11):5327-5338.
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.11 , pp. 5327-5338
    • McLachlan, G.J.1    Bean, R.W.2    Jones, L.B.-T.3
  • 29
    • 84947788012 scopus 로고    scopus 로고
    • Robust cluster analysis via mixtures of multivariate t-distributions
    • Springer-Verlag, Berlin
    • McLachlan G.J., Peel D. Robust cluster analysis via mixtures of multivariate t-distributions. Lecture Notes in Computer Science 1998, vol. 1451:658-666. Springer-Verlag, Berlin.
    • (1998) Lecture Notes in Computer Science , vol.1451 , pp. 658-666
    • McLachlan, G.J.1    Peel, D.2
  • 31
    • 0001921693 scopus 로고    scopus 로고
    • Mixtures of factor analyzers. In: Proceedings of the Seventh International Conference on Machine Learning. Morgan Kaufmann, San Francisco,
    • McLachlan, G.J., Peel, D., 2000b. Mixtures of factor analyzers. In: Proceedings of the Seventh International Conference on Machine Learning. Morgan Kaufmann, San Francisco, pp. 599-606.
    • (2000) , pp. 599-606
    • McLachlan, G.J.1    Peel, D.2
  • 32
    • 74149093702 scopus 로고    scopus 로고
    • Model-based classification using latent Gaussian mixture models
    • McNicholas P.D. Model-based classification using latent Gaussian mixture models. Journal of Statistical Planning and Inference 2010, 140(5):1175-1181.
    • (2010) Journal of Statistical Planning and Inference , vol.140 , Issue.5 , pp. 1175-1181
    • McNicholas, P.D.1
  • 35
    • 77958504829 scopus 로고    scopus 로고
    • Model-based clustering of microarray expression data via latent Gaussian mixture models. Bioinformatics
    • McNicholas, P.D., Murphy, T.B., 2010b. Model-based clustering of microarray expression data via latent Gaussian mixture models. Bioinformatics 26. (21), 2705-2712.
    • (2010) , vol.26 , Issue.21 , pp. 2705-2712
    • McNicholas, P.D.1    Murphy, T.B.2
  • 36
    • 70549109507 scopus 로고    scopus 로고
    • Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models
    • McNicholas P.D., Murphy T.B., McDaid A.F., Frost D. Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models. Computational Statistics and Data Analysis 2010, 54(3):711-723.
    • (2010) Computational Statistics and Data Analysis , vol.54 , Issue.3 , pp. 711-723
    • McNicholas, P.D.1    Murphy, T.B.2    McDaid, A.F.3    Frost, D.4
  • 37
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: a general framework
    • Meng X.-L., Rubin D.B. Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 1993, 80:267-278.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.-L.1    Rubin, D.B.2
  • 38
  • 39
    • 78650190749 scopus 로고    scopus 로고
    • R Development Core Team R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria URL:
    • R Development Core Team 2010. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria URL: http://www.R-project.org.
    • (2010)
  • 40
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 1971, 66:846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 42
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978, 6:31-38.
    • (1978) The Annals of Statistics , vol.6 , pp. 31-38
    • Schwarz, G.1
  • 43
    • 0002965815 scopus 로고
    • The proof and measurement of association between two things
    • Spearman C. The proof and measurement of association between two things. American Journal of Psychology 1904, 15:72-101.
    • (1904) American Journal of Psychology , vol.15 , pp. 72-101
    • Spearman, C.1
  • 44
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • Tipping T.E., Bishop C.M. Mixtures of probabilistic principal component analysers. Neural Computation 1999, 11(2):443-482.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, T.E.1    Bishop, C.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.