-
1
-
-
33749346301
-
Modification of proteins by ubiquitin and ubiquitin-like proteins
-
Kerscher O., et al. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell. Dev. Biol. 2006, 22:159-180.
-
(2006)
Annu. Rev. Cell. Dev. Biol.
, vol.22
, pp. 159-180
-
-
Kerscher, O.1
-
2
-
-
70350150000
-
The emerging complexity of protein ubiquitination
-
Komander D. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 2009, 37:937-953.
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 937-953
-
-
Komander, D.1
-
3
-
-
3943099375
-
Protein modification by SUMO
-
Johnson E.S. Protein modification by SUMO. Annu. Rev. Biochem. 2004, 73:355-382.
-
(2004)
Annu. Rev. Biochem.
, vol.73
, pp. 355-382
-
-
Johnson, E.S.1
-
5
-
-
59149107480
-
The SUMO system: an overview
-
Ulrich H.D. The SUMO system: an overview. Methods Mol. Biol. 2009, 497:3-16.
-
(2009)
Methods Mol. Biol.
, vol.497
, pp. 3-16
-
-
Ulrich, H.D.1
-
6
-
-
0035929557
-
Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9
-
Tatham M.H., et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 2001, 276:35368-35374.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 35368-35374
-
-
Tatham, M.H.1
-
7
-
-
0242414786
-
The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast
-
Bylebyl G.R., et al. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 2003, 278:44112-44120.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 44112-44120
-
-
Bylebyl, G.R.1
-
8
-
-
63049125531
-
Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
-
Xu P., et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009, 137:133-145.
-
(2009)
Cell
, vol.137
, pp. 133-145
-
-
Xu, P.1
-
9
-
-
39049093685
-
In vivo identification of human SUMO polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy
-
Matic I., et al. In vivo identification of human SUMO polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. Proteomics 2007, 7:132-144.
-
(2007)
Mol. Cell. Proteomics
, vol.7
, pp. 132-144
-
-
Matic, I.1
-
10
-
-
43849093519
-
A SIM-ultaneous role for SUMO and ubiquitin
-
Perry J.J., et al. A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem. Sci. 2008, 33:201-208.
-
(2008)
Trends Biochem. Sci.
, vol.33
, pp. 201-208
-
-
Perry, J.J.1
-
11
-
-
84979820277
-
Sumoylation as a signal for polyubiquitylation and proteasomal degradation
-
Miteva M., et al. Sumoylation as a signal for polyubiquitylation and proteasomal degradation. Subcell. Biochem. 2010, 54:195-214.
-
(2010)
Subcell. Biochem.
, vol.54
, pp. 195-214
-
-
Miteva, M.1
-
12
-
-
0032135131
-
SUMO-1 modification of IκBα inhibits NF-κB activation
-
Desterro J.M., et al. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 1998, 2:233-239.
-
(1998)
Mol. Cell
, vol.2
, pp. 233-239
-
-
Desterro, J.M.1
-
13
-
-
0037068455
-
RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
-
Hoege C., et al. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002, 419:135-141.
-
(2002)
Nature
, vol.419
, pp. 135-141
-
-
Hoege, C.1
-
14
-
-
0344305376
-
Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress
-
Huang T.T., et al. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 2003, 115:565-576.
-
(2003)
Cell
, vol.115
, pp. 565-576
-
-
Huang, T.T.1
-
15
-
-
34249066085
-
PCNA, the maestro of the replication fork
-
Moldovan G.L., et al. PCNA, the maestro of the replication fork. Cell 2007, 129:665-679.
-
(2007)
Cell
, vol.129
, pp. 665-679
-
-
Moldovan, G.L.1
-
16
-
-
57749169348
-
SUMOylation regulates Rad18-mediated template switch
-
Branzei D., et al. SUMOylation regulates Rad18-mediated template switch. Nature 2008, 456:915-920.
-
(2008)
Nature
, vol.456
, pp. 915-920
-
-
Branzei, D.1
-
17
-
-
22944474665
-
SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase
-
Pfander B., et al. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 2005, 436:428-433.
-
(2005)
Nature
, vol.436
, pp. 428-433
-
-
Pfander, B.1
-
18
-
-
21244449061
-
Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p
-
Papouli E., et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 2005, 19:123-133.
-
(2005)
Mol. Cell
, vol.19
, pp. 123-133
-
-
Papouli, E.1
-
19
-
-
36348977099
-
Ubiquitin-dependent proteolytic control of SUMO conjugates
-
Uzunova K., et al. Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem. 2007, 282:34167-34175.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 34167-34175
-
-
Uzunova, K.1
-
20
-
-
34648840192
-
SUMO-targeted ubiquitin ligases in genome stability
-
Prudden J., et al. SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 2007, 26:4089-4101.
-
(2007)
EMBO J.
, vol.26
, pp. 4089-4101
-
-
Prudden, J.1
-
21
-
-
34648816891
-
Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins
-
Sun H., et al. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 2007, 26:4102-4112.
-
(2007)
EMBO J.
, vol.26
, pp. 4102-4112
-
-
Sun, H.1
-
22
-
-
36348964395
-
The yeast HEX3-SLX8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation
-
Xie Y., et al. The yeast HEX3-SLX8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem. 2007, 282:34176-34184.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 34176-34184
-
-
Xie, Y.1
-
23
-
-
43049093756
-
RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation
-
Tatham M.H., et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 2008, 10:538-546.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 538-546
-
-
Tatham, M.H.1
-
24
-
-
43049096803
-
Arsenic degrades PML or PML-RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway
-
Lallemand-Breitenbach V., et al. Arsenic degrades PML or PML-RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 2008, 10:547-555.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 547-555
-
-
Lallemand-Breitenbach, V.1
-
25
-
-
51249085621
-
Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML
-
Weisshaar S.R., et al. Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Lett. 2008, 582:3174-3178.
-
(2008)
FEBS Lett.
, vol.582
, pp. 3174-3178
-
-
Weisshaar, S.R.1
-
26
-
-
0035148955
-
Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae
-
Mullen J.R., et al. Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 2001, 157:103-118.
-
(2001)
Genetics
, vol.157
, pp. 103-118
-
-
Mullen, J.R.1
-
27
-
-
54949093203
-
Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase
-
Nagai S., et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 2008, 322:597-602.
-
(2008)
Science
, vol.322
, pp. 597-602
-
-
Nagai, S.1
-
28
-
-
63049110916
-
Quality control of a transcriptional regulator by SUMO-targeted degradation
-
Wang Z., Prelich G. Quality control of a transcriptional regulator by SUMO-targeted degradation. Mol. Cell. Biol. 2009, 29:1694-1706.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 1694-1706
-
-
Wang, Z.1
Prelich, G.2
-
29
-
-
79959381925
-
Comparative proteomic analysis identifies a role for SUMO in protein quality control
-
Tatham M.H., et al. Comparative proteomic analysis identifies a role for SUMO in protein quality control. Sci. Signal. 2011, 4:rs4.
-
(2011)
Sci. Signal.
, vol.4
-
-
Tatham, M.H.1
-
30
-
-
63049116472
-
Genome stability roles of SUMO-targeted ubiquitin ligases
-
Heideker J., et al. Genome stability roles of SUMO-targeted ubiquitin ligases. DNA Repair 2009, 8:517-524.
-
(2009)
DNA Repair
, vol.8
, pp. 517-524
-
-
Heideker, J.1
-
31
-
-
77951219176
-
Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45
-
Sekiyama N., et al. Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45. Proteins 2010, 78:1491-1502.
-
(2010)
Proteins
, vol.78
, pp. 1491-1502
-
-
Sekiyama, N.1
-
32
-
-
79953761297
-
SUMO-targeted ubiquitin ligase, Rad60, and Nse2 SUMO ligase suppress spontaneous Top1-mediated DNA damage and genome instability
-
Heideker J., et al. SUMO-targeted ubiquitin ligase, Rad60, and Nse2 SUMO ligase suppress spontaneous Top1-mediated DNA damage and genome instability. PLoS Genet. 2011, 7:e1001320.
-
(2011)
PLoS Genet.
, vol.7
-
-
Heideker, J.1
-
33
-
-
77956638214
-
RING domain dimerization is essential for RNF4 function
-
Liew C.W., et al. RING domain dimerization is essential for RNF4 function. Biochem. J. 2010, 431:23-29.
-
(2010)
Biochem. J.
, vol.431
, pp. 23-29
-
-
Liew, C.W.1
-
34
-
-
80052442072
-
Mechanism of ubiquitylation by dimeric RING ligase RNF4
-
Plechanovova A., et al. Mechanism of ubiquitylation by dimeric RING ligase RNF4. Nat. Struct. Mol. Biol. 2011, 18:1052-1059.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1052-1059
-
-
Plechanovova, A.1
-
35
-
-
77949378117
-
The SUMO protease SENP6 is essential for inner kinetochore assembly
-
Mukhopadhyay D., et al. The SUMO protease SENP6 is essential for inner kinetochore assembly. J. Cell Biol. 2010, 188:681-692.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 681-692
-
-
Mukhopadhyay, D.1
-
36
-
-
77951211689
-
RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated hypoxia-inducible factor-2α
-
van Hagen M., et al. RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated hypoxia-inducible factor-2α. Nucleic Acids Res. 2010, 38:1922-1931.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 1922-1931
-
-
van Hagen, M.1
-
37
-
-
79551604903
-
Purification and identification of endogenous polySUMO conjugates
-
Bruderer R., et al. Purification and identification of endogenous polySUMO conjugates. EMBO Rep. 2011, 12:142-148.
-
(2011)
EMBO Rep.
, vol.12
, pp. 142-148
-
-
Bruderer, R.1
-
38
-
-
67649173012
-
System-wide changes to SUMO modifications in response to heat shock
-
Golebiowski F., et al. System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2009, 2:ra24.
-
(2009)
Sci. Signal.
, vol.2
-
-
Golebiowski, F.1
-
39
-
-
77956994293
-
Identification of RING finger protein 4 (RNF4) as a modulator of DNA demethylation through a functional genomics screen
-
Hu X.V., et al. Identification of RING finger protein 4 (RNF4) as a modulator of DNA demethylation through a functional genomics screen. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:15087-15092.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 15087-15092
-
-
Hu, X.V.1
-
40
-
-
79953787641
-
Degringolade, a SUMO-targeted ubiquitin ligase, inhibits Hairy/Groucho-mediated repression
-
Abed M., et al. Degringolade, a SUMO-targeted ubiquitin ligase, inhibits Hairy/Groucho-mediated repression. EMBO J. 2011, 30:1289-1301.
-
(2011)
EMBO J.
, vol.30
, pp. 1289-1301
-
-
Abed, M.1
-
41
-
-
79953791802
-
The Drosophila STUbL protein Degringolade limits HES functions during embryogenesis
-
Barry K.C., et al. The Drosophila STUbL protein Degringolade limits HES functions during embryogenesis. Development 2011, 138:1759-1769.
-
(2011)
Development
, vol.138
, pp. 1759-1769
-
-
Barry, K.C.1
-
42
-
-
77951806546
-
SUMO-independent in vivo activity of a SUMO-targeted ubiquitin ligase toward a short-lived transcription factor
-
Xie Y., et al. SUMO-independent in vivo activity of a SUMO-targeted ubiquitin ligase toward a short-lived transcription factor. Genes Dev. 2010, 24:893-903.
-
(2010)
Genes Dev.
, vol.24
, pp. 893-903
-
-
Xie, Y.1
-
43
-
-
79751479288
-
The HIF pathway and erythrocytosis
-
Lee F.S., Percy M.J. The HIF pathway and erythrocytosis. Annu. Rev. Pathol. 2011, 6:165-192.
-
(2011)
Annu. Rev. Pathol.
, vol.6
, pp. 165-192
-
-
Lee, F.S.1
Percy, M.J.2
-
44
-
-
35548935098
-
SUMO-specific protease 1 is essential for stabilization of HIF1α during hypoxia
-
Cheng J., et al. SUMO-specific protease 1 is essential for stabilization of HIF1α during hypoxia. Cell 2007, 131:584-595.
-
(2007)
Cell
, vol.131
, pp. 584-595
-
-
Cheng, J.1
-
45
-
-
34447249876
-
SUMOylation of hypoxia-inducible factor-1α reduces its transcriptional activity
-
Berta M.A., et al. SUMOylation of hypoxia-inducible factor-1α reduces its transcriptional activity. Biochem. Biophys. Res. Commun. 2007, 360:646-652.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.360
, pp. 646-652
-
-
Berta, M.A.1
-
46
-
-
77958020584
-
PIASy stimulates HIF1α SUMOylation and negatively regulates HIF1α activity in response to hypoxia
-
Kang X., et al. PIASy stimulates HIF1α SUMOylation and negatively regulates HIF1α activity in response to hypoxia. Oncogene 2010, 29:5568-5578.
-
(2010)
Oncogene
, vol.29
, pp. 5568-5578
-
-
Kang, X.1
-
47
-
-
35348904953
-
RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1α during hypoxia
-
Carbia-Nagashima A., et al. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1α during hypoxia. Cell 2007, 131:309-323.
-
(2007)
Cell
, vol.131
, pp. 309-323
-
-
Carbia-Nagashima, A.1
-
48
-
-
77958550713
-
Ubiquitin/SUMO modification regulates VHL protein stability and nucleocytoplasmic localization
-
Cai Q., Robertson E.S. Ubiquitin/SUMO modification regulates VHL protein stability and nucleocytoplasmic localization. PLoS ONE 2010, 5:e12636.
-
(2010)
PLoS ONE
, vol.5
-
-
Cai, Q.1
Robertson, E.S.2
-
49
-
-
77953915005
-
Ubiquitin signalling in DNA replication and repair
-
Ulrich H.D., Walden H. Ubiquitin signalling in DNA replication and repair. Nat. Rev. Mol. Cell Biol. 2010, 11:479-489.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 479-489
-
-
Ulrich, H.D.1
Walden, H.2
-
50
-
-
72449175818
-
Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks
-
Galanty Y., et al. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 2009, 462:935-939.
-
(2009)
Nature
, vol.462
, pp. 935-939
-
-
Galanty, Y.1
-
51
-
-
72449163470
-
The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress
-
Morris J.R., et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 2009, 462:886-890.
-
(2009)
Nature
, vol.462
, pp. 886-890
-
-
Morris, J.R.1
-
52
-
-
65949105701
-
The SUMO-targeted ubiquitin ligase subunit Slx5 resides in nuclear foci and at sites of DNA breaks
-
Cook C.E., et al. The SUMO-targeted ubiquitin ligase subunit Slx5 resides in nuclear foci and at sites of DNA breaks. Cell Cycle 2009, 8:1080-1089.
-
(2009)
Cell Cycle
, vol.8
, pp. 1080-1089
-
-
Cook, C.E.1
-
53
-
-
4344563161
-
Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53
-
Rajendra R., et al. Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J. Biol. Chem. 2004, 279:36440-36444.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 36440-36444
-
-
Rajendra, R.1
-
54
-
-
24144483441
-
Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo
-
Weger S., et al. Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett. 2005, 579:5007-5012.
-
(2005)
FEBS Lett.
, vol.579
, pp. 5007-5012
-
-
Weger, S.1
-
55
-
-
67650529837
-
Plk1-mediated phosphorylation of Topors regulates p53 stability
-
Yang X., et al. Plk1-mediated phosphorylation of Topors regulates p53 stability. J. Biol. Chem. 2009, 284:18588-18592.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 18588-18592
-
-
Yang, X.1
-
56
-
-
77955659718
-
Plk1 phosphorylation of Topors is involved in its degradation
-
Yang X., et al. Plk1 phosphorylation of Topors is involved in its degradation. Mol. Biol. Rep. 2010, 37:3023-3028.
-
(2010)
Mol. Biol. Rep.
, vol.37
, pp. 3023-3028
-
-
Yang, X.1
-
57
-
-
58849137633
-
Identification of phosphorylation sites of TOPORS and a role for serine 98 in the regulation of ubiquitin but not SUMO E3 ligase activity
-
Park H.-J., et al. Identification of phosphorylation sites of TOPORS and a role for serine 98 in the regulation of ubiquitin but not SUMO E3 ligase activity. Biochemistry 2008, 47:13887-13896.
-
(2008)
Biochemistry
, vol.47
, pp. 13887-13896
-
-
Park, H.-J.1
-
58
-
-
36048929872
-
The E3 ligase Topors induces the accumulation of polysumoylated forms of DNA topoisomerase I in vitro and in vivo
-
Hammer E., et al. The E3 ligase Topors induces the accumulation of polysumoylated forms of DNA topoisomerase I in vitro and in vivo. FEBS Lett. 2007, 581:5418-5424.
-
(2007)
FEBS Lett.
, vol.581
, pp. 5418-5424
-
-
Hammer, E.1
-
59
-
-
35648971684
-
TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins
-
Pungaliya P., et al. TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins. J. Proteome Res. 2007, 6:3918-3923.
-
(2007)
J. Proteome Res.
, vol.6
, pp. 3918-3923
-
-
Pungaliya, P.1
-
60
-
-
0036314919
-
The topoisomerase I-binding RING protein, topors, is associated with promyelocytic leukemia nuclear bodies
-
Rasheed Z.A., et al. The topoisomerase I-binding RING protein, topors, is associated with promyelocytic leukemia nuclear bodies. Exp. Cell Res. 2002, 277:152-160.
-
(2002)
Exp. Cell Res.
, vol.277
, pp. 152-160
-
-
Rasheed, Z.A.1
-
61
-
-
76849100745
-
SUMOylation-dependent localization of IKKe{open} in PML nuclear bodies is essential for protection against DNA-damage-triggered cell death
-
Renner F., et al. SUMOylation-dependent localization of IKKe{open} in PML nuclear bodies is essential for protection against DNA-damage-triggered cell death. Mol. Cell 2010, 37:503-515.
-
(2010)
Mol. Cell
, vol.37
, pp. 503-515
-
-
Renner, F.1
-
62
-
-
0141569249
-
The DNA topoisomerase I binding protein topors as a novel cellular target for SUMO-1 modification: characterization of domains necessary for subcellular localization and sumolation
-
Weger S., et al. The DNA topoisomerase I binding protein topors as a novel cellular target for SUMO-1 modification: characterization of domains necessary for subcellular localization and sumolation. Exp. Cell Res. 2003, 290:13-27.
-
(2003)
Exp. Cell Res.
, vol.290
, pp. 13-27
-
-
Weger, S.1
-
63
-
-
77956936946
-
MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases
-
Doyle J.M., et al. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell 2010, 39:963-974.
-
(2010)
Mol. Cell
, vol.39
, pp. 963-974
-
-
Doyle, J.M.1
-
64
-
-
80052766372
-
The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability
-
Stephan A.K., et al. The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability. FEBS Lett. 2011, 585:2907-2913.
-
(2011)
FEBS Lett.
, vol.585
, pp. 2907-2913
-
-
Stephan, A.K.1
-
65
-
-
77955286868
-
Wss1 is a SUMO-dependent isopeptidase that interacts genetically with the Slx5-Slx8 SUMO-targeted ubiquitin ligase
-
Mullen J.R., et al. Wss1 is a SUMO-dependent isopeptidase that interacts genetically with the Slx5-Slx8 SUMO-targeted ubiquitin ligase. Mol. Cell. Biol. 2010, 30:3737-3748.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 3737-3748
-
-
Mullen, J.R.1
-
66
-
-
70349213234
-
SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation
-
Huang C., et al. SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J. 2009, 28:2748-2762.
-
(2009)
EMBO J.
, vol.28
, pp. 2748-2762
-
-
Huang, C.1
-
67
-
-
33745046562
-
Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2
-
Itahana Y., et al. Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol. Cell. Biol. 2006, 26:4675-4689.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 4675-4689
-
-
Itahana, Y.1
-
68
-
-
17844401751
-
SUMO modification of the ubiquitin-conjugating enzyme E2-25K
-
Pichler A., et al. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat. Struct. Mol. Biol. 2005, 12:264-269.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 264-269
-
-
Pichler, A.1
-
69
-
-
48349117947
-
Ubc9 sumoylation regulates SUMO target discrimination
-
Knipscheer P., et al. Ubc9 sumoylation regulates SUMO target discrimination. Mol. Cell 2008, 31:371-382.
-
(2008)
Mol. Cell
, vol.31
, pp. 371-382
-
-
Knipscheer, P.1
-
70
-
-
44449109533
-
Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25
-
Meulmeester E., et al. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol. Cell 2008, 30:610-619.
-
(2008)
Mol. Cell
, vol.30
, pp. 610-619
-
-
Meulmeester, E.1
-
71
-
-
68149163523
-
The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition
-
Denuc A., et al. The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PLoS ONE 2009, 4:e5571.
-
(2009)
PLoS ONE
, vol.4
-
-
Denuc, A.1
-
72
-
-
36448975490
-
Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies
-
Bernardi R., Pandolfi P.P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 2007, 8:1006-1016.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 1006-1016
-
-
Bernardi, R.1
Pandolfi, P.P.2
-
73
-
-
27244444559
-
TRIM family proteins: retroviral restriction and antiviral defence
-
Nisole S., et al. TRIM family proteins: retroviral restriction and antiviral defence. Nat. Rev. Microbiol. 2005, 3:799-808.
-
(2005)
Nat. Rev. Microbiol.
, vol.3
, pp. 799-808
-
-
Nisole, S.1
-
74
-
-
79952281303
-
SUMO E3 ligase activity of TRIM proteins
-
Chu Y., Yang X. SUMO E3 ligase activity of TRIM proteins. Oncogene 2011, 30:1108-1116.
-
(2011)
Oncogene
, vol.30
, pp. 1108-1116
-
-
Chu, Y.1
Yang, X.2
-
75
-
-
52649120917
-
Dynamics of component exchange at PML nuclear bodies
-
Weidtkamp-Peters S., et al. Dynamics of component exchange at PML nuclear bodies. J. Cell. Sci. 2008, 121:2731-2743.
-
(2008)
J. Cell. Sci.
, vol.121
, pp. 2731-2743
-
-
Weidtkamp-Peters, S.1
-
76
-
-
54549084341
-
New insights into the role of the subnuclear structure ND10 for viral infection
-
Tavalai N., Stamminger T. New insights into the role of the subnuclear structure ND10 for viral infection. Biochim. Biophys. Acta 2008, 1783:2207-2221.
-
(2008)
Biochim. Biophys. Acta
, vol.1783
, pp. 2207-2221
-
-
Tavalai, N.1
Stamminger, T.2
-
77
-
-
76649083577
-
Three-dimensional organization of promyelocytic leukemia nuclear bodies
-
Lang M., et al. Three-dimensional organization of promyelocytic leukemia nuclear bodies. J. Cell Sci. 2010, 123:392-400.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 392-400
-
-
Lang, M.1
-
78
-
-
0035969107
-
Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot
-
Negorev D., Maul G.G. Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot. Oncogene 2001, 20:7234-7242.
-
(2001)
Oncogene
, vol.20
, pp. 7234-7242
-
-
Negorev, D.1
Maul, G.G.2
-
79
-
-
80052341054
-
Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin
-
Wang L., et al. Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin. PLoS Pathog. 2011, 7:e1002157.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Wang, L.1
-
80
-
-
79959848568
-
The intrinsic antiviral defense to incoming HSV-1 genomes includes specific DNA repair proteins and is counteracted by the viral protein ICP0
-
Lilley C.E., et al. The intrinsic antiviral defense to incoming HSV-1 genomes includes specific DNA repair proteins and is counteracted by the viral protein ICP0. PLoS Pathog. 2011, 7:e1002084.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Lilley, C.E.1
-
81
-
-
41949111045
-
Acute promyelocytic leukemia: from highly fatal to highly curable
-
Wang Z.Y., Chen Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008, 111:2505-2515.
-
(2008)
Blood
, vol.111
, pp. 2505-2515
-
-
Wang, Z.Y.1
Chen, Z.2
-
82
-
-
78650109515
-
Arsenic-induced, SUMO-dependent recruitment of RNF4 into PML nuclear bodies
-
Geoffroy M.C., et al. Arsenic-induced, SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol. Biol. Cell 2010, 21:4227-4239.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 4227-4239
-
-
Geoffroy, M.C.1
-
83
-
-
59649087451
-
Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling
-
Stehmeier P., Muller S. Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol. Cell 2009, 33:400-409.
-
(2009)
Mol. Cell
, vol.33
, pp. 400-409
-
-
Stehmeier, P.1
Muller, S.2
-
84
-
-
77950826446
-
Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML
-
Zhang X.W., et al. Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML. Science 2010, 328:240-243.
-
(2010)
Science
, vol.328
, pp. 240-243
-
-
Zhang, X.W.1
-
85
-
-
77954287020
-
PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3
-
Jeanne M., et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 2010, 18:88-98.
-
(2010)
Cancer Cell
, vol.18
, pp. 88-98
-
-
Jeanne, M.1
|