메뉴 건너뛰기




Volumn 29, Issue 3, 2001, Pages 273-289

Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures

Author keywords

Back propagation; Box Jenkins; Experimental design; Forecasting; Neural networks; Simulation; Time series

Indexed keywords


EID: 0012759982     PISSN: 03050483     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0305-0483(01)00022-6     Document Type: Article
Times cited : (108)

References (28)
  • 2
    • 0000002118 scopus 로고
    • Some statistical process control methods for autocorrected data
    • Montgomery D.C., Mastrangelo C.M. Some statistical process control methods for autocorrected data. Journal of Quality Technology. 23(3):1991;179-204.
    • (1991) Journal of Quality Technology , vol.23 , Issue.3 , pp. 179-204
    • Montgomery, D.C.1    Mastrangelo, C.M.2
  • 3
    • 0028533024 scopus 로고
    • Analysis of auto-correlation in dynamic processes
    • Zhang N.F., Pollard J.F. Analysis of auto-correlation in dynamic processes. Technometrics. 36:1994;354-368.
    • (1994) Technometrics , vol.36 , pp. 354-368
    • Zhang, N.F.1    Pollard, J.F.2
  • 7
    • 0039864927 scopus 로고
    • Performance of neural networks in managerial forecasting. Intelligent Systems in Accounting
    • Jhee W.C., Lee J.K. Performance of neural networks in managerial forecasting. Intelligent Systems in Accounting. Finance and Management. 2:1993;55-71.
    • (1993) Finance and Management , vol.2 , pp. 55-71
    • Jhee, W.C.1    Lee, J.K.2
  • 8
    • 0008572943 scopus 로고    scopus 로고
    • Data quality in neural network models: Effect of error rate and magnitude of error on predictive accuracy
    • Klein B.D., Rossin D.F. Data quality in neural network models: effect of error rate and magnitude of error on predictive accuracy. Omega, The International Journal of Management Science. 27:1999;569-582.
    • (1999) Omega, the International Journal of Management Science , vol.27 , pp. 569-582
    • Klein, B.D.1    Rossin, D.F.2
  • 9
    • 0026258339 scopus 로고
    • A Time series forecasting using neural networks vs. Box-Jenkins methodology
    • Tang Z., Almeida C de., Fishwick P. A Time series forecasting using neural networks vs. Box-Jenkins methodology. Simulation. 57(5):1991;303-310.
    • (1991) Simulation , vol.57 , Issue.5 , pp. 303-310
    • Tang, Z.1    De Almeida, C.2    Fishwick, P.3
  • 10
    • 0000393458 scopus 로고
    • Back-propagation neural nets as models for time series forecasting
    • Tang Z., Fishwick P.A. Back-propagation neural nets as models for time series forecasting. ORSA Journal on Computing. 5(4):1993;374-385.
    • (1993) ORSA Journal on Computing , vol.5 , Issue.4 , pp. 374-385
    • Tang, Z.1    Fishwick, P.A.2
  • 11
    • 0009630815 scopus 로고    scopus 로고
    • An insight into the standard back-propagation neural network model for regression analysis
    • Wang S. An insight into the standard back-propagation neural network model for regression analysis. Omega, The International Journal of Management Science. 26:1998;133-140.
    • (1998) Omega, the International Journal of Management Science , vol.26 , pp. 133-140
    • Wang, S.1
  • 15
    • 0030110883 scopus 로고    scopus 로고
    • Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model
    • Wedding DK II, Cios KJ. Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model. Neurocomputing 1996;10(3):149-68.
    • (1996) Neurocomputing , vol.10 , Issue.3 , pp. 149-168
    • Wedding D.K. II1    Cios, K.J.2
  • 16
    • 0029190972 scopus 로고
    • Artificial neural networks in forecasting
    • Wu S.I. Artificial neural networks in forecasting. Neural Network World. 2:1995;199-220.
    • (1995) Neural Network World , vol.2 , pp. 199-220
    • Wu, S.I.1
  • 17
    • 0024861871 scopus 로고
    • Approximation by superpositions of sigmoidal function
    • Cybenko G. Approximation by superpositions of sigmoidal function. Mathematic Control Signal Systems. 2:1989;303-314.
    • (1989) Mathematic Control Signal Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 18
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks. 2:1989;359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 21
    • 0000860595 scopus 로고    scopus 로고
    • Neural network models for time series forecasts
    • Hill T., O'Connor M., Remus W. Neural network models for time series forecasts. Management Science. 42(7):1996;1082-1092.
    • (1996) Management Science , vol.42 , Issue.7 , pp. 1082-1092
    • Hill, T.1    O'Connor, M.2    Remus, W.3
  • 22
    • 0030111205 scopus 로고    scopus 로고
    • A comparison of artificial neural network and time series models for forecasting commodity prices
    • Kohzadi N., Boyd M.S., Kermanshahi B., Kaastra I. A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing. 10(3):1996;169-181.
    • (1996) Neurocomputing , vol.10 , Issue.3 , pp. 169-181
    • Kohzadi, N.1    Boyd, M.S.2    Kermanshahi, B.3    Kaastra, I.4
  • 23
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • Kaastra I., Boyd M. Designing a neural network for forecasting financial and economic time series. Neurocomputing. 10(3):1996;215-236.
    • (1996) Neurocomputing , vol.10 , Issue.3 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 24
    • 0003140365 scopus 로고    scopus 로고
    • Neural networks in applied statistics
    • Stern H.S. Neural networks in applied statistics. Technometrics. 38(3):1996;205-214.
    • (1996) Technometrics , vol.38 , Issue.3 , pp. 205-214
    • Stern, H.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.