메뉴 건너뛰기




Volumn 7, Issue 12, 2011, Pages

Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons

Author keywords

[No Author keywords available]

Indexed keywords

GRAPHIC METHODS; NEURONS; SPEECH RECOGNITION; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84855256984     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1002294     Document Type: Article
Times cited : (102)

References (66)
  • 1
    • 81355133300 scopus 로고    scopus 로고
    • Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons
    • Buesing L, Bill J, Nessler B, Maass W, (2011) Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput Biol 7: e1002211.
    • (2011) PLoS Comput Biol , vol.7
    • Buesing, L.1    Bill, J.2    Nessler, B.3    Maass, W.4
  • 3
    • 78650972934 scopus 로고    scopus 로고
    • Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment
    • Berkes P, Orbán G, Lengyel M, Fiser J, (2011) Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331: 83-87.
    • (2011) Science , vol.331 , pp. 83-87
    • Berkes, P.1    Orbán, G.2    Lengyel, M.3    Fiser, J.4
  • 4
  • 6
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • Technical report, University of Toronto, Department of Computer Science
    • Neal RM, (1993) Probabilistic inference using Markov chain Monte Carlo methods. Technical report, University of Toronto, Department of Computer Science.
    • (1993)
    • Neal, R.M.1
  • 8
    • 33846516584 scopus 로고    scopus 로고
    • Pattern Recognition and Machine Learning (Information Science and Statistics)
    • 1st edition, 2006 corr 2nd printing edition. Springer
    • Bishop CM, (2007) Pattern Recognition and Machine Learning (Information Science and Statistics). 1st edition, 2006 corr 2nd printing edition. Springer.
    • (2007)
    • Bishop, C.M.1
  • 12
    • 76749113376 scopus 로고    scopus 로고
    • Statistically optimal perception and learning: from behavior to neural representations
    • Fiser J, Berkes P, Orbán G, Lengyel M, (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn Sci 14: 119-130.
    • (2010) Trends Cogn Sci , vol.14 , pp. 119-130
    • Fiser, J.1    Berkes, P.2    Orbán, G.3    Lengyel, M.4
  • 13
    • 79952512265 scopus 로고    scopus 로고
    • How to grow a mind: Statistics, structure, and abstraction
    • Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND, (2011) How to grow a mind: Statistics, structure, and abstraction. Science 331: 1279-1285.
    • (2011) Science , vol.331 , pp. 1279-1285
    • Tenenbaum, J.B.1    Kemp, C.2    Griffiths, T.L.3    Goodman, N.D.4
  • 14
    • 74049084540 scopus 로고    scopus 로고
    • A Bayesian view on motor control and planning
    • In: Sigaud O, Peters J, editors, Studies in Computational Intelligence. Springer
    • Toussaint M, Goerick C, (2010) A Bayesian view on motor control and planning. In: Sigaud O, Peters J, editors. From motor to interaction learning in robots Studies in Computational Intelligence. Springer pp. 227-252.
    • (2010) From Motor to Interaction Learning in Robots , pp. 227-252
    • Toussaint, M.1    Goerick, C.2
  • 15
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Ackley DH, Hinton GE, Sejnowski TJ, (1985) A learning algorithm for Boltzmann machines. Cogn Sci 9: 147-169.
    • (1985) Cogn Sci , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 17
    • 37749042762 scopus 로고    scopus 로고
    • Bayesian spiking neurons I: Inference
    • Deneve S, (2008) Bayesian spiking neurons I: Inference. Neural Comput 20: 91-117.
    • (2008) Neural Comput , vol.20 , pp. 91-117
    • Deneve, S.1
  • 18
    • 79952458995 scopus 로고    scopus 로고
    • Spike-based population coding and working memory
    • Boerlin M, Deneve S, (2011) Spike-based population coding and working memory. PLoS Comput Biol 7: e1001080.
    • (2011) PLoS Comput Biol , vol.7
    • Boerlin, M.1    Deneve, S.2
  • 19
    • 33745833056 scopus 로고    scopus 로고
    • Predicting spike timing of neocortical pyramidal neurons by simple threshold models
    • Jolivet R, Rauch A, Lüscher H, Gerstner W, (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21: 35-49.
    • (2006) J Comput Neurosci , vol.21 , pp. 35-49
    • Jolivet, R.1    Rauch, A.2    Lüscher, H.3    Gerstner, W.4
  • 20
    • 0038396223 scopus 로고    scopus 로고
    • Bayesian models of object perception
    • Kersten D, Yuille A, (2003) Bayesian models of object perception. Curr Opin Neurobiol 13: 150-158.
    • (2003) Curr Opin Neurobiol , vol.13 , pp. 150-158
    • Kersten, D.1    Yuille, A.2
  • 21
    • 0025881712 scopus 로고
    • Apparent surface curvature affects lightness perception
    • Knill DC, Kersten D, (1991) Apparent surface curvature affects lightness perception. Nature 351: 228-230.
    • (1991) Nature , vol.351 , pp. 228-230
    • Knill, D.C.1    Kersten, D.2
  • 22
    • 41349096492 scopus 로고    scopus 로고
    • Compartmentalized dendritic plasticity and input feature storage in neurons
    • Losonczy A, Makara JK, Magee JC, (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452: 436-441.
    • (2008) Nature , vol.452 , pp. 436-441
    • Losonczy, A.1    Makara, J.K.2    Magee, J.C.3
  • 23
    • 79960955023 scopus 로고    scopus 로고
    • Branch-specific plasticity enables self-organization of nonlinear computation in single neurons
    • Legenstein R, Maass W, (2011) Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. J Neurosci 31: 10787-10802.
    • (2011) J Neurosci , vol.31 , pp. 10787-10802
    • Legenstein, R.1    Maass, W.2
  • 24
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen SL, Spiegelhalter DJ, (1988) Local computations with probabilities on graphical structures and their application to expert systems. J R Stat Soc Ser B Stat Methodol 50: 157-224.
    • (1988) J R Stat Soc Ser B Stat Methodol , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 26
    • 0037040593 scopus 로고    scopus 로고
    • Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons
    • Williams SR, Stuart GJ, (2002) Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295: 1907-1910.
    • (2002) Science , vol.295 , pp. 1907-1910
    • Williams, S.R.1    Stuart, G.J.2
  • 27
    • 76349108199 scopus 로고    scopus 로고
    • Random generation of Bayesian networks
    • In: Bittencourt G, Ramalho G, editors, Berlin/Heidelberg, Springer. volume 2507
    • Ide J, Cozman F, (2002) Random generation of Bayesian networks. In: Bittencourt G, Ramalho G, editors. Advances in Artificial Intelligence Berlin/Heidelberg Springer. volume 2507 pp. 366-376.
    • (2002) Advances in Artificial Intelligence , pp. 366-376
    • Ide, J.1    Cozman, F.2
  • 29
    • 77249164196 scopus 로고    scopus 로고
    • Stochastic transitions between neural states in taste processing and decision-making
    • Miller P, Katz DB, (2010) Stochastic transitions between neural states in taste processing and decision-making. J Neurosci 30: 2559-2570.
    • (2010) J Neurosci , vol.30 , pp. 2559-2570
    • Miller, P.1    Katz, D.B.2
  • 31
    • 0043240255 scopus 로고    scopus 로고
    • Voltage- and site-dependent control of the somatic impact of dendritic IPSPs
    • Williams SR, Stuart GJ, (2003) Voltage- and site-dependent control of the somatic impact of dendritic IPSPs. J Neurosci 23: 7358-7367.
    • (2003) J Neurosci , vol.23 , pp. 7358-7367
    • Williams, S.R.1    Stuart, G.J.2
  • 32
    • 0041319178 scopus 로고    scopus 로고
    • Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons
    • Ariav G, Polsky A, Schiller J, (2003) Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J Neurosci 23: 7750-7758.
    • (2003) J Neurosci , vol.23 , pp. 7750-7758
    • Ariav, G.1    Polsky, A.2    Schiller, J.3
  • 33
    • 3943088427 scopus 로고    scopus 로고
    • Neuronal circuits of the neocortex
    • Douglas RJ, Martin KA, (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27: 419-451.
    • (2004) Annu Rev Neurosci , vol.27 , pp. 419-451
    • Douglas, R.J.1    Martin, K.A.2
  • 36
    • 70349235964 scopus 로고    scopus 로고
    • Belief propagation in networks of spiking neurons
    • Steimer A, Maass W, Douglas R, (2009) Belief propagation in networks of spiking neurons. Neural Comput 21: 2502-2523.
    • (2009) Neural Comput , vol.21 , pp. 2502-2523
    • Steimer, A.1    Maass, W.2    Douglas, R.3
  • 37
    • 77953750826 scopus 로고    scopus 로고
    • Cortical circuitry implementing graphical models
    • Litvak S, Ullman S, (2009) Cortical circuitry implementing graphical models. Neural Comput 21: 3010-3056.
    • (2009) Neural Comput , vol.21 , pp. 3010-3056
    • Litvak, S.1    Ullman, S.2
  • 38
    • 0347527070 scopus 로고    scopus 로고
    • Bayesian computation in recurrent neural circuits
    • Rao RPN, (2004) Bayesian computation in recurrent neural circuits. Neural Comput 16: 1-38.
    • (2004) Neural Comput , vol.16 , pp. 1-38
    • Rao, R.P.N.1
  • 39
    • 44949127494 scopus 로고    scopus 로고
    • Neural models of Bayesian belief propagation
    • In: Doya K, Ishii S, Pouget A, Rao RPN, editors, Cambridge, MA, MIT-Press
    • Rao RPN, (2007) Neural models of Bayesian belief propagation. In: Doya K, Ishii S, Pouget A, Rao RPN, editors. Bayesian Brain Cambridge, MA MIT-Press pp. 239-267.
    • (2007) Bayesian Brain , pp. 239-267
    • Rao, R.P.N.1
  • 40
    • 70349263824 scopus 로고    scopus 로고
    • Bayesian filtering in spiking neural networks: Noise, adaptation, and multisensory integration
    • Bobrowski O, Meir R, Eldar YC, (2009) Bayesian filtering in spiking neural networks: Noise, adaptation, and multisensory integration. Neural Comput 21: 1277-1320.
    • (2009) Neural Comput , vol.21 , pp. 1277-1320
    • Bobrowski, O.1    Meir, R.2    Eldar, Y.C.3
  • 41
    • 78649428796 scopus 로고    scopus 로고
    • Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference
    • Siegelmann HT, Holzman LE, (2010) Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference. Chaos 20: 037112.
    • (2010) Chaos , vol.20 , pp. 037112
    • Siegelmann, H.T.1    Holzman, L.E.2
  • 42
    • 34247875892 scopus 로고    scopus 로고
    • Exact inferences in a neural implementation of a hidden Markov model
    • Beck JM, Pouget A, (2007) Exact inferences in a neural implementation of a hidden Markov model. Neural Comput 19: 1344-1361.
    • (2007) Neural Comput , vol.19 , pp. 1344-1361
    • Beck, J.M.1    Pouget, A.2
  • 43
    • 0033360288 scopus 로고    scopus 로고
    • Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects
    • Rao RP, Ballard DH, (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2: 79-87.
    • (1999) Nat Neurosci , vol.2 , pp. 79-87
    • Rao, R.P.1    Ballard, D.H.2
  • 44
    • 52049084777 scopus 로고    scopus 로고
    • Spiking networks for Bayesian inference and choice
    • Ma WJ, Beck JM, Pouget A, (2008) Spiking networks for Bayesian inference and choice. Curr Opin Neurobiol 18: 217-222.
    • (2008) Curr Opin Neurobiol , vol.18 , pp. 217-222
    • Ma, W.J.1    Beck, J.M.2    Pouget, A.3
  • 45
    • 33750437292 scopus 로고    scopus 로고
    • Bayesian inference with probabilistic population codes
    • Ma WJ, Beck JM, Latham PE, Pouget A, (2006) Bayesian inference with probabilistic population codes. Nat Neurosci 9: 1432-1438.
    • (2006) Nat Neurosci , vol.9 , pp. 1432-1438
    • Ma, W.J.1    Beck, J.M.2    Latham, P.E.3    Pouget, A.4
  • 46
    • 0034932944 scopus 로고    scopus 로고
    • Efficient computation and cue integration with noisy population codes
    • Deneve S, Latham PE, Pouget A, (2001) Efficient computation and cue integration with noisy population codes. Nat Neurosci 4: 826-831.
    • (2001) Nat Neurosci , vol.4 , pp. 826-831
    • Deneve, S.1    Latham, P.E.2    Pouget, A.3
  • 47
    • 84898963841 scopus 로고    scopus 로고
    • Inference, attention, and decision in a Bayesian neural architecture
    • MIT Press
    • Yu AJ, Dayan P, (2005) Inference, attention, and decision in a Bayesian neural architecture. Advances in Neural Information Processing Systems 17 MIT Press pp. 1577-1584.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 1577-1584
    • Yu, A.J.1    Dayan, P.2
  • 48
    • 84858731044 scopus 로고    scopus 로고
    • Neural implementation of hierarchical Bayesian inference by importance sampling
    • MIT Press
    • Shi L, Griffiths T, (2009) Neural implementation of hierarchical Bayesian inference by importance sampling. Advances in Neural Information Processing Systems 22 MIT Press pp. 1669-1677.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1669-1677
    • Shi, L.1    Griffiths, T.2
  • 49
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • Maass W, Natschlaeger T, Markram H, (2002) Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput 14: 2531-2560.
    • (2002) Neural Comput , vol.14 , pp. 2531-2560
    • Maass, W.1    Natschlaeger, T.2    Markram, H.3
  • 54
    • 84898960665 scopus 로고    scopus 로고
    • Interpreting neural response variability as Monte Carlo sampling of the posterior
    • MIT Press
    • Hoyer PO, Hyvärinen A, (2003) Interpreting neural response variability as Monte Carlo sampling of the posterior. Advances in Neural Information Processing Systems 15 MIT Press pp. 277-284.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 277-284
    • Hoyer, P.O.1    Hyvärinen, A.2
  • 56
    • 0019856238 scopus 로고
    • The variability of discharge of simple cells in the cat striate cortex
    • Dean AF, (1981) The variability of discharge of simple cells in the cat striate cortex. Exp Brain Res 44: 437-440.
    • (1981) Exp Brain Res , vol.44 , pp. 437-440
    • Dean, A.F.1
  • 57
    • 0020563088 scopus 로고
    • The statistical reliability of signals in single neurons in cat and monkey visual cortex
    • Tolhurst D, Movshon J, Dean A, (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res 23: 775-785.
    • (1983) Vision Res , vol.23 , pp. 775-785
    • Tolhurst, D.1    Movshon, J.2    Dean, A.3
  • 58
    • 0242667929 scopus 로고    scopus 로고
    • Spontaneously emerging cortical representations of visual attributes
    • Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A, (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425: 954-956.
    • (2003) Nature , vol.425 , pp. 954-956
    • Kenet, T.1    Bibitchkov, D.2    Tsodyks, M.3    Grinvald, A.4    Arieli, A.5
  • 59
    • 77949916969 scopus 로고    scopus 로고
    • Two views of brain function
    • Raichle ME, (2010) Two views of brain function. Trends Cogn Sci 14: 180-190.
    • (2010) Trends Cogn Sci , vol.14 , pp. 180-190
    • Raichle, M.E.1
  • 60
    • 33747688922 scopus 로고    scopus 로고
    • Optimal Predictions in Everyday Cognition
    • Griffiths TL, Tenenbaum JB, (2006) Optimal Predictions in Everyday Cognition. Psychol Sci 17: 767-773.
    • (2006) Psychol Sci , vol.17 , pp. 767-773
    • Griffiths, T.L.1    Tenenbaum, J.B.2
  • 61
    • 47649133311 scopus 로고    scopus 로고
    • Measuring the crowd within: Probabilistic representations within individuals
    • Vul E, Pashler H, (2008) Measuring the crowd within: Probabilistic representations within individuals. Psychol Sci 19: 645-647.
    • (2008) Psychol Sci , vol.19 , pp. 645-647
    • Vul, E.1    Pashler, H.2
  • 63
    • 65549157033 scopus 로고    scopus 로고
    • Burst spiking of a single cortical neuron modifies global brain state
    • Li CT, Poo M, Dan Y, (2009) Burst spiking of a single cortical neuron modifies global brain state. Science 324: 643-646.
    • (2009) Science , vol.324 , pp. 643-646
    • Li, C.T.1    Poo, M.2    Dan, Y.3
  • 64
    • 64849111400 scopus 로고    scopus 로고
    • Correlated connectivity and the distribution of firing rates in the neocortex
    • Koulakov AA, Hromadka T, Zador AM, (2009) Correlated connectivity and the distribution of firing rates in the neocortex. J Neurosci 29: 3685-3694.
    • (2009) J Neurosci , vol.29 , pp. 3685-3694
    • Koulakov, A.A.1    Hromadka, T.2    Zador, A.M.3
  • 66
    • 77954383001 scopus 로고    scopus 로고
    • PCSIM: a parallel simulation environment for neural circuits fully integrated with Python
    • Pecevski D, Natschläger T, Schuch K, (2009) PCSIM: a parallel simulation environment for neural circuits fully integrated with Python. Front Neuroinform 3: 11.
    • (2009) Front Neuroinform , vol.3 , pp. 11
    • Pecevski, D.1    Natschläger, T.2    Schuch, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.