메뉴 건너뛰기




Volumn 1240, Issue 1, 2011, Pages 7-13

Epigenetic regulation of osteoclast differentiation

Author keywords

Differentiation; Epigenetics; Histone modification; Jmjd3; Osteoclast

Indexed keywords

HISTONE DEMETHYLASE; HISTONE H3; LYSINE; MICRORNA; OSTEOCLAST DIFFERENTIATION FACTOR; TRANSCRIPTION FACTOR NFAT; TRANSCRIPTION FACTOR NFATC1; UNCLASSIFIED DRUG; UNTRANSLATED RNA;

EID: 83755206832     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2011.06245.x     Document Type: Article
Times cited : (42)

References (46)
  • 1
    • 34249337761 scopus 로고    scopus 로고
    • Perceptions of epigenetics
    • Bird, A. 2007. Perceptions of epigenetics. Nature 447: 396-398.
    • (2007) Nature , vol.447 , pp. 396-398
    • Bird, A.1
  • 2
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski, A. et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837.
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1
  • 3
    • 40749109894 scopus 로고    scopus 로고
    • Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning
    • Cokus, S.J. et al. 2008. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452: 215-219.
    • (2008) Nature , vol.452 , pp. 215-219
    • Cokus, S.J.1
  • 4
    • 84957846754 scopus 로고
    • The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography
    • Hotchkiss, R.D. 1948. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. 175: 315-332.
    • (1948) J. Biol. Chem. , vol.175 , pp. 315-332
    • Hotchkiss, R.D.1
  • 5
    • 0037372003 scopus 로고    scopus 로고
    • Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals
    • Jaenisch, R. & A. Bird. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33(Suppl): 245-254.
    • (2003) Nat. Genet. , vol.33 , Issue.SUPPL. , pp. 245-254
    • Jaenisch, R.1    Bird, A.2
  • 6
    • 34249275353 scopus 로고    scopus 로고
    • Phenotypic plasticity and the epigenetics of human disease
    • Feinberg, A.P. 2007. Phenotypic plasticity and the epigenetics of human disease. Nature 447: 433-440.
    • (2007) Nature , vol.447 , pp. 433-440
    • Feinberg, A.P.1
  • 7
    • 1042278765 scopus 로고    scopus 로고
    • The history of cancer epigenetics
    • Feinberg, A.P. & B. Tycko. 2004. The history of cancer epigenetics. Nat. Rev. Cancer 4: 143-153.
    • (2004) Nat. Rev. Cancer , vol.4 , pp. 143-153
    • Feinberg, A.P.1    Tycko, B.2
  • 8
    • 70649095120 scopus 로고    scopus 로고
    • Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts
    • Doi, A. et al. 2009. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41: 1350-1353.
    • (2009) Nat. Genet. , vol.41 , pp. 1350-1353
    • Doi, A.1
  • 9
    • 77956902023 scopus 로고    scopus 로고
    • Comprehensive methylome map of lineage commitment from haematopoietic progenitors
    • Ji, H. et al. 2010. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467: 338-342.
    • (2010) Nature , vol.467 , pp. 338-342
    • Ji, H.1
  • 10
    • 0026522204 scopus 로고
    • Profound block in thymocyte development in mice lacking p56lck
    • Molina, T.J. et al. 1992. Profound block in thymocyte development in mice lacking p56lck. Nature 357: 161-164.
    • (1992) Nature , vol.357 , pp. 161-164
    • Molina, T.J.1
  • 11
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 A resolution
    • Luger, K. et al. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260.
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1
  • 12
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • Jenuwein, T. & C.D. Allis. 2001. Translating the histone code. Science 293: 1074-1080.
    • (2001) Science , vol.293 , pp. 1074-1080
    • Jenuwein, T.1    Allis, C.D.2
  • 13
    • 49449100095 scopus 로고    scopus 로고
    • Epigenetic plasticity of chromatin in embryonic and hematopoietic stem/progenitor cells: therapeutic potential of cell reprogramming
    • Zardo, G., G. Cimino & C. Nervi. 2008. Epigenetic plasticity of chromatin in embryonic and hematopoietic stem/progenitor cells: therapeutic potential of cell reprogramming. Leukemia 22: 1503-1518.
    • (2008) Leukemia , vol.22 , pp. 1503-1518
    • Zardo, G.1    Cimino, G.2    Nervi, C.3
  • 14
    • 40849139208 scopus 로고    scopus 로고
    • Epigenetics in cancer
    • Esteller, M. 2008. Epigenetics in cancer. N. Eng. J. Med. 358: 1148-1159.
    • (2008) N. Eng. J. Med. , vol.358 , pp. 1148-1159
    • Esteller, M.1
  • 15
    • 33750488431 scopus 로고    scopus 로고
    • The genomic landscape of histone modifications in human T cells
    • Roh, T.Y. et al. 2006. The genomic landscape of histone modifications in human T cells. Proc. Natl. Acad. Sci. USA 103: 15782-15787.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 15782-15787
    • Roh, T.Y.1
  • 16
    • 58049191558 scopus 로고    scopus 로고
    • Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation
    • Cui, K. et al. 2009. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4: 80-93.
    • (2009) Cell Stem Cell , vol.4 , pp. 80-93
    • Cui, K.1
  • 17
    • 48949099045 scopus 로고    scopus 로고
    • Inferring causal relationships among different histone modifications and gene expression
    • Yu, H. et al. 2008. Inferring causal relationships among different histone modifications and gene expression. Genome Res. 18: 1314-1324.
    • (2008) Genome Res. , vol.18 , pp. 1314-1324
    • Yu, H.1
  • 18
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl, B.D. & C.D. Allis. 2000. The language of covalent histone modifications. Nature 403: 41-45.
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 19
    • 33646872978 scopus 로고    scopus 로고
    • Chromatin signatures of pluripotent cell lines
    • Azuara, V. et al. 2006. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8: 532-538.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 532-538
    • Azuara, V.1
  • 20
    • 33646070846 scopus 로고    scopus 로고
    • A bivalent chromatin structure marks key developmental genes in embryonic stem cells
    • Bernstein, B.E. et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315-326.
    • (2006) Cell , vol.125 , pp. 315-326
    • Bernstein, B.E.1
  • 21
    • 35148867907 scopus 로고    scopus 로고
    • UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development
    • Agger, K. et al. 2007. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449: 731-734.
    • (2007) Nature , vol.449 , pp. 731-734
    • Agger, K.1
  • 22
    • 36749082438 scopus 로고    scopus 로고
    • Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases
    • Hong, S. et al. 2007. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl. Acad. Sci. USA 104: 18439-18444.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 18439-18444
    • Hong, S.1
  • 23
    • 77956954197 scopus 로고    scopus 로고
    • The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection
    • Satoh, T. et al. 2010. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 11: 936-944.
    • (2010) Nat. Immunol. , vol.11 , pp. 936-944
    • Satoh, T.1
  • 24
    • 47549105128 scopus 로고    scopus 로고
    • Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3
    • Sen, G.L. et al. 2008. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev. 22: 1865-1870.
    • (2008) Genes Dev. , vol.22 , pp. 1865-1870
    • Sen, G.L.1
  • 25
    • 77952367798 scopus 로고    scopus 로고
    • Widespread transcription at neuronal activity-regulated enhancers
    • Kim, T.K. et al. 2010. Widespread transcription at neuronal activity-regulated enhancers. Nature 465: 182-187.
    • (2010) Nature , vol.465 , pp. 182-187
    • Kim, T.K.1
  • 26
    • 79959346470 scopus 로고    scopus 로고
    • Non-coding RNAs, epigenetic memory and the passage of information to progeny
    • Morris, K.V. 2009. Non-coding RNAs, epigenetic memory and the passage of information to progeny. RNA Biol. 6: 242-247.
    • (2009) RNA Biol. , vol.6 , pp. 242-247
    • Morris, K.V.1
  • 27
    • 67349157682 scopus 로고    scopus 로고
    • Tiny RNAs associated with transcription start sites in animals
    • Taft, R.J. et al. 2009. Tiny RNAs associated with transcription start sites in animals. Nat. Genet. 41: 572-578.
    • (2009) Nat. Genet. , vol.41 , pp. 572-578
    • Taft, R.J.1
  • 28
    • 60149099385 scopus 로고    scopus 로고
    • Evolution and functions of long noncoding RNAs
    • Ponting, C.P., P.L. Oliver & W. Reik. 2009. Evolution and functions of long noncoding RNAs. Cell 136: 629-641.
    • (2009) Cell , vol.136 , pp. 629-641
    • Ponting, C.P.1    Oliver, P.L.2    Reik, W.3
  • 29
    • 1942435249 scopus 로고    scopus 로고
    • Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs
    • Bartel, D.P. & C.Z. Chen. 2004. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5: 396-400.
    • (2004) Nat. Rev. Genet. , vol.5 , pp. 396-400
    • Bartel, D.P.1    Chen, C.Z.2
  • 30
    • 33846283385 scopus 로고    scopus 로고
    • The evolution of gene regulation by transcription factors and microRNAs
    • Chen, K. & N. Rajewsky. 2007. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8: 93-103.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 93-103
    • Chen, K.1    Rajewsky, N.2
  • 31
    • 0346727524 scopus 로고    scopus 로고
    • MicroRNAs modulate hematopoietic lineage differentiation
    • Chen, C.Z. et al. 2004. MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83-86.
    • (2004) Science , vol.303 , pp. 83-86
    • Chen, C.Z.1
  • 32
    • 77958134349 scopus 로고    scopus 로고
    • Lyn kinase-dependent regulation of miR181 and myeloid cell leukemia-1 expression: implications for drug resistance in myelogenous leukemia
    • Zimmerman, E.I. et al. 2010. Lyn kinase-dependent regulation of miR181 and myeloid cell leukemia-1 expression: implications for drug resistance in myelogenous leukemia. Mol. Pharmacol. 78: 811-817.
    • (2010) Mol. Pharmacol. , vol.78 , pp. 811-817
    • Zimmerman, E.I.1
  • 33
    • 0037673945 scopus 로고    scopus 로고
    • Osteoclast differentiation and activation
    • Boyle, W.J., W.S. Simonet & D.L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423: 337-342.
    • (2003) Nature , vol.423 , pp. 337-342
    • Boyle, W.J.1    Simonet, W.S.2    Lacey, D.L.3
  • 34
    • 0036225281 scopus 로고    scopus 로고
    • Reaching a genetic and molecular understanding of skeletal development
    • Karsenty, G. & E.F. Wagner. 2002. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2: 389-406.
    • (2002) Dev. Cell , vol.2 , pp. 389-406
    • Karsenty, G.1    Wagner, E.F.2
  • 35
    • 0034284970 scopus 로고    scopus 로고
    • Bone resorption by osteoclasts
    • Teitelbaum, S.L. 2000. Bone resorption by osteoclasts. Science 289: 1504-1508.
    • (2000) Science , vol.289 , pp. 1504-1508
    • Teitelbaum, S.L.1
  • 36
    • 28544452658 scopus 로고    scopus 로고
    • Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system
    • Tanaka, S. et al. 2005. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol. Rev. 208: 30-49.
    • (2005) Immunol. Rev. , vol.208 , pp. 30-49
    • Tanaka, S.1
  • 37
    • 0032540319 scopus 로고    scopus 로고
    • Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation
    • Lacey, D.L. et al. 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165-176.
    • (1998) Cell , vol.93 , pp. 165-176
    • Lacey, D.L.1
  • 38
    • 0032584208 scopus 로고    scopus 로고
    • Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL
    • Yasuda, H. et al. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95: 3597-3602.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 3597-3602
    • Yasuda, H.1
  • 39
    • 27744432009 scopus 로고    scopus 로고
    • Autoamplification of NFATc1 expression determines its essential role in bone homeostasis
    • Asagiri, M. et al. 2005. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202: 1261-1269.
    • (2005) J. Exp. Med. , vol.202 , pp. 1261-1269
    • Asagiri, M.1
  • 40
    • 18744366041 scopus 로고    scopus 로고
    • Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts
    • Takayanagi, H. et al. 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3: 889-901.
    • (2002) Dev. Cell , vol.3 , pp. 889-901
    • Takayanagi, H.1
  • 41
    • 0036289336 scopus 로고    scopus 로고
    • Vitamin D(3) augments osteoclastogenesis via vitamin D-responsive element of mouse RANKL gene promoter
    • Kitazawa, R. & S. Kitazawa. 2002. Vitamin D(3) augments osteoclastogenesis via vitamin D-responsive element of mouse RANKL gene promoter. Biochem. Biophys. Res. Commun. 290: 650-655.
    • (2002) Biochem. Biophys. Res. Commun. , vol.290 , pp. 650-655
    • Kitazawa, R.1    Kitazawa, S.2
  • 42
    • 77950429619 scopus 로고    scopus 로고
    • Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption
    • Mizoguchi, F. et al. 2010. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J. Cell Biochem. 109: 866-875.
    • (2010) J. Cell Biochem. , vol.109 , pp. 866-875
    • Mizoguchi, F.1
  • 43
    • 63249113375 scopus 로고    scopus 로고
    • Impaired micro-RNA pathways diminish osteoclast differentiation and function
    • Sugatani, T. & K.A. Hruska. 2009. Impaired micro-RNA pathways diminish osteoclast differentiation and function. J. Biol. Chem. 284: 4667-4678.
    • (2009) J. Biol. Chem. , vol.284 , pp. 4667-4678
    • Sugatani, T.1    Hruska, K.A.2
  • 44
    • 79953686494 scopus 로고    scopus 로고
    • A microRNA expression signature of osteoclastogenesis
    • Sugatani, T., J. Vacher & K.A. Hruska. 2011. A microRNA expression signature of osteoclastogenesis. Blood 117: 3648-3657.
    • (2011) Blood , vol.117 , pp. 3648-3657
    • Sugatani, T.1    Vacher, J.2    Hruska, K.A.3
  • 45
    • 77957664009 scopus 로고    scopus 로고
    • miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate
    • Mann, M. et al. 2010. miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate. Proc. Natl. Acad. Sci. USA 107: 15804-15809.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 15804-15809
    • Mann, M.1
  • 46
    • 79959531020 scopus 로고    scopus 로고
    • Regulation of RANKL-induced osteoclastogenesis by TGF-beta through molecular interaction between Smad3 and Traf6
    • Yasui, T. et al. 2011. Regulation of RANKL-induced osteoclastogenesis by TGF-beta through molecular interaction between Smad3 and Traf6. J. Bone Miner. Res. 26: 1447-1456.
    • (2011) J. Bone Miner. Res. , vol.26 , pp. 1447-1456
    • Yasui, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.