메뉴 건너뛰기




Volumn , Issue , 2011, Pages 502-509

Fast dependency-aware feature selection in very-high-dimensional pattern recognition

Author keywords

classification; feature selection; generalization; high dimensionality; machine learning; over fitting; pattern recognition; ranking; stability

Indexed keywords

GENERALIZATION; HIGH DIMENSIONALITY; MACHINE-LEARNING; OVERFITTING; RANKING;

EID: 83755184214     PISSN: 1062922X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSMC.2011.6083733     Document Type: Conference Paper
Times cited : (13)

References (48)
  • 3
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, no. 1-2, pp. 273-324, 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 5
    • 0344609892 scopus 로고    scopus 로고
    • Special issue on variable and feature selection
    • "Special issue on variable and feature selection," J. of Machine Learning Research. http://www. jmlr.org/papers/special/feature.html, 2003.
    • (2003) J. of Machine Learning Research
  • 6
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • DOI 10.1109/TKDE.2005.66
    • H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 4, pp. 491-502, 2005. (Pubitemid 40495592)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 7
    • 34247622378 scopus 로고    scopus 로고
    • Iterative RELIEF for feature weighting: Algorithms, theories, and applications
    • DOI 10.1109/TPAMI.2007.1093
    • Y. Sun, "Iterative relief for feature weighting: Algorithms, theories, and applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1035-1051, 2007. (Pubitemid 46667414)
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.6 , pp. 1035-1051
    • Sun, Y.1
  • 9
    • 33845300232 scopus 로고    scopus 로고
    • Feature selection algorithms in classification problems: An experimental evaluation
    • DOI 10.1080/10556780600881910, PII Q1ML5528268Q830G
    • A. Salappa, M. Doumpos, and C. Zopounidis, "Feature selection algorithms in classification problems: An experimental evaluation," Optimization Methods and Software, vol. 22, no. 1, pp. 199-212, 2007. (Pubitemid 44878967)
    • (2007) Optimization Methods and Software , vol.22 , Issue.1 , pp. 199-212
    • Salappa, A.1    Doumpos, M.2    Zopounidis, C.3
  • 10
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • DOI 10.1109/36.934069, PII S0196289201054997
    • S. B. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyper-spectral remote sensing images," IEEE Trans. on Geoscience and Remote Sensing, vol. 39, no. 7, pp. 1360-1367, 2001. (Pubitemid 32732652)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.B.1    Bruzzone, L.2
  • 12
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • March
    • F. Sebastiani, "Machine learning in automated text categorization," ACM Computing Surveys, vol. 34, no. 1, pp. 1-47, March 2002.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 13
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • J. G. Dy and C. E. Brodley, "Feature selection for unsupervised learning,"J. Mach. Learn. Res., vol. 5, pp. 845-889, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 15
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Y. Saeys, I. Inza, and P. Larrañaga, "A review of feature selection techniques in bioinformatics," Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 16
    • 10044247069 scopus 로고    scopus 로고
    • Feature selection using tabu search for improving the classification rate of prostate needle biopsies
    • Washington, DC, USA: IEEE Computer Society
    • M. A. Tahir, A. Bouridane, F. Kurugollu, and A. Amira, "Feature selection using tabu search for improving the classification rate of prostate needle biopsies," in Proc. ICPR '04, vol. 2. Washington, DC, USA: IEEE Computer Society, 2004, pp. 335-338.
    • (2004) Proc. ICPR '04 , vol.2 , pp. 335-338
    • Tahir, M.A.1    Bouridane, A.2    Kurugollu, F.3    Amira, A.4
  • 17
    • 83455217064 scopus 로고    scopus 로고
    • A New Perspective for Information Theoretic Feature Selection
    • of JMLR: W&CP 5
    • G. Brown, "A New Perspective for Information Theoretic Feature Selection," in Proc. AISTATS '09, vol. 5 of JMLR: W&CP 5, 2009, pp. 49-56.
    • (2009) Proc. AISTATS '09 , vol.5 , pp. 49-56
    • Brown, G.1
  • 20
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
    • Y. Yang and J. O. Pedersen, "A comparative study on feature selection in text categorization," in ICML '97: Proc. 14th Int. Conf. on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997, pp. 412-420.
    • (1997) ICML '97: Proc. 14th Int. Conf. on Machine Learning , pp. 412-420
    • Yang, Y.1    Pedersen, J.O.2
  • 21
    • 0002551285 scopus 로고    scopus 로고
    • Feature selection for unbalanced class distribution and naive bayes
    • San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
    • D. Mladenić and M. Grobelnik, "Feature selection for unbalanced class distribution and naive bayes," in ICML '99: Proc. 16th Int. Conf. on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 258-267.
    • (1999) ICML '99: Proc. 16th Int. Conf. on Machine Learning , pp. 258-267
    • Mladenić, D.1    Grobelnik, M.2
  • 23
    • 17644439883 scopus 로고    scopus 로고
    • Feature selection by maximum marginal diversity: Optimality and implications for visual recognition
    • Washington, DC, USA: IEEE Computer Society, June
    • N. Vasconcelos, "Feature selection by maximum marginal diversity: optimality and implications for visual recognition," in Proc. IEEE Conf. On Computer Vision And Pattern Recognition, vol. 1. Washington, DC, USA: IEEE Computer Society, June 2003, pp. 762-769.
    • (2003) Proc. IEEE Conf. On Computer Vision and Pattern Recognition , vol.1 , pp. 762-769
    • Vasconcelos, N.1
  • 24
    • 10044224476 scopus 로고    scopus 로고
    • Large scale feature selection using modified random mutation hill climbing
    • Washington, DC, USA: IEEE Computer Society
    • M. E. Farmer, S. Bapna, and A. K. Jain, "Large scale feature selection using modified random mutation hill climbing," in ICPR '04: Proc. 17th Int. Conf. on Pattern Recognition, vol. 2. Washington, DC, USA: IEEE Computer Society, 2004, pp. 287-290.
    • (2004) ICPR '04: Proc. 17th Int. Conf. on Pattern Recognition , vol.2 , pp. 287-290
    • Farmer, M.E.1    Bapna, S.2    Jain, A.K.3
  • 25
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • J. Reunanen, "Overfitting in making comparisons between variable selection methods," J. Mach. Learn. Res., vol. 3, pp. 1371-1382, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 27
    • 33745816725 scopus 로고    scopus 로고
    • Less biased measurement of feature selection benefits
    • Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005 Revised Selected Papers, C. Saunders, M. Grobelnik, S. Gunn, and J. Shawe-Taylor, Eds., vol. Springer Berlin / Heidelberg
    • -, "Less biased measurement of feature selection benefits," in Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers, C. Saunders, M. Grobelnik, S. Gunn, and J. Shawe-Taylor, Eds., vol. LNCS 3940. Springer Berlin / Heidelberg, 2006, pp. 198-208.
    • (2006) LNCS , vol.3940 , pp. 198-208
    • Reunanen, J.1
  • 28
    • 26944463426 scopus 로고    scopus 로고
    • On understanding and assessing feature selection bias
    • Artificial Intelligence in Medicine, vol. Springer-Verlag
    • Š. J. Raudys, R. Baumgartner, and R. Somorjai, "On understanding and assessing feature selection bias," in Artificial Intelligence in Medicine, vol. LNAI 3581. Springer-Verlag, 2005, pp. 468-472.
    • (2005) LNAI , vol.3581 , pp. 468-472
    • Raudys, Š.J.1    Baumgartner, R.2    Somorjai, R.3
  • 29
    • 33749612557 scopus 로고    scopus 로고
    • Feature over-selection
    • Structural, Syntactic, and Statistical Pattern Recognition, vol. Berlin / Heidelberg, Germany: Springer-Verlag
    • Š. J. Raudys, "Feature over-selection," in Structural, Syntactic, and Statistical Pattern Recognition, vol. LNCS 4109. Berlin / Heidelberg, Germany: Springer-Verlag, 2006, pp. 622-631.
    • (2006) LNCS , vol.4109 , pp. 622-631
    • Raudys, Š.J.1
  • 31
    • 33745039800 scopus 로고    scopus 로고
    • Parallelizing feature selection
    • J. T. Souza, S. Matwin, and N. Japkowicz, "Parallelizing feature selection,"Algorithmica, vol. 45, no. 3, pp. 433-456, 2006.
    • (2006) Algorithmica , vol.45 , Issue.3 , pp. 433-456
    • Souza, J.T.1    Matwin, S.2    Japkowicz, N.3
  • 32
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • Washington DC, USA: Morgan Kaufmann Publishers Inc.
    • L. Yu and H. Liu, "Feature selection for high-dimensional data: A fast correlation-based filter solution," in ICML-03: Proc. 20th Int. Conf. on Machine Learning, vol. 20. Washington DC, USA: Morgan Kaufmann Publishers Inc., 2003, pp. 856-863.
    • (2003) ICML-03: Proc. 20th Int. Conf. on Machine Learning , vol.20 , pp. 856-863
    • Yu, L.1    Liu, H.2
  • 33
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • F. Fleuret, "Fast binary feature selection with conditional mutual information,"J. Mach. Learn. Res., vol. 5, pp. 1531-1555, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 34
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy, "IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, 2005. (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 35
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algoirthm
    • W. Swartout, Ed. AAAI Press/The MIT Press, August
    • K. Kira and L. A. Rendell, "The feature selection problem: Traditional methods and a new algoirthm," in AAAI-92: Proc. 10th Nat. Conf. on Artifical Intelligence, W. Swartout, Ed. AAAI Press/The MIT Press, August 1992, pp. 129-134.
    • (1992) AAAI-92: Proc. 10th Nat. Conf. on Artifical Intelligence , pp. 129-134
    • Kira, K.1    Rendell, L.A.2
  • 36
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • Secaucus, NJ, USA: Springer-Verlag New York, Inc.
    • I. Kononenko, "Estimating attributes: Analysis and extensions of relief,"in ECML-94: Proc. European Conf. on Machine Learning. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1994, pp. 171-182.
    • (1994) ECML-94: Proc. European Conf. on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 37
    • 33749562363 scopus 로고    scopus 로고
    • Orthogonal relief algorithm for feature selection
    • Intelligent Computing, vol. Berlin / Heidelberg, Germany: Springer-Verlag
    • J. Yang and Y.-P. Li, "Orthogonal relief algorithm for feature selection,"in Intelligent Computing, vol. LNCS 4113. Berlin / Heidelberg, Germany: Springer-Verlag, 2006, pp. 227-234.
    • (2006) LNCS , vol.4113 , pp. 227-234
    • Yang, J.1    Li, Y.-P.2
  • 38
    • 84951828553 scopus 로고    scopus 로고
    • Genetic algorithms for feat. select. and weighting, a review and study
    • vol. 00
    • F. Hussein, R. Ward, and N. Kharma, "Genetic algorithms for feat. select. and weighting, a review and study," icdar, vol. 00, p. 1240, 2001.
    • (2001) Icdar , pp. 1240
    • Hussein, F.1    Ward, R.2    Kharma, N.3
  • 39
    • 14844342529 scopus 로고    scopus 로고
    • Int. Series in Operations Research & Management Science
    • ser. Springer
    • F. W. Glover and G. A. Kochenberger, Eds., Handbook of Metaheuristics, ser. Int. Series in Operations Research & Management Science. Springer, 2003, vol. 57.
    • (2003) Handbook of Metaheuristics , vol.57
    • Glover, F.W.1    Kochenberger, G.A.2
  • 40
    • 33845497491 scopus 로고    scopus 로고
    • Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier
    • DOI 10.1016/j.patrec.2006.08.016, PII S0167865506002303
    • M. A. Tahir, A. Bouridane, and F. Kurugollu, "Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier," Pattern Recogn. Lett., vol. 28, no. 4, pp. 438-446, 2007. (Pubitemid 44918133)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 438-446
    • Tahir, M.A.1    Bouridane, A.2    Kurugollu, F.3
  • 41
    • 0031191557 scopus 로고    scopus 로고
    • Feature subset selection within a simulated annealing data mining algorithm
    • J. C. W. Debuse and V. J. Rayward-Smith, "Feature subset selection within a simulated annealing data mining algorithm," J. Intell. Inf. Syst., vol. 9, no. 1, pp. 57-81, 1997.
    • (1997) J. Intell. Inf. Syst. , vol.9 , Issue.1 , pp. 57-81
    • Debuse, J.C.W.1    Rayward-Smith, V.J.2
  • 42
    • 33845224680 scopus 로고    scopus 로고
    • Oscillating feature subset search algorithm for text categorization
    • Structural, Syntactic, and Statistical Pattern Recognition, vol. Berlin / Heidelberg, Germany: Springer-Verlag
    • J. Novovičová, P. Somol, and P. Pudil, "Oscillating feature subset search algorithm for text categorization," in Structural, Syntactic, and Statistical Pattern Recognition, vol. LNCS 4109. Berlin / Heidelberg, Germany: Springer-Verlag, 2006, pp. 578-587.
    • (2006) LNCS , vol.4109 , pp. 578-587
    • Novovičová, J.1    Somol, P.2    Pudil, P.3
  • 43
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset selection in large dimensionality domains
    • I. A. Gheyas and L. S. Smith, "Feature subset selection in large dimensionality domains," Pattern Recognition, vol. 43, no. 1, pp. 5-13, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.1 , pp. 5-13
    • Gheyas, I.A.1    Smith, L.S.2
  • 44
    • 33646258047 scopus 로고    scopus 로고
    • Random subspace method for multivariate feature selection
    • C. Lai, M. J. T. Reinders, and L. Wessels, "Random subspace method for multivariate feature selection," Pattern Recogn. Lett., vol. 27, no. 10, pp. 1067-1076, 2006.
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.10 , pp. 1067-1076
    • Lai, C.1    Reinders, M.J.T.2    Wessels, L.3
  • 46
    • 36948999941 scopus 로고    scopus 로고
    • Online. Available: http://www.ics.uci.edu/~mlearn/MLRepository.html
    • A. Asuncion and D. Newman, "UCI machine learning repository, http://www.ics.uci.edu/~mlearn/ mlrepository.html," 2007. [Online]. Available: http://www.ics.uci.edu/~mlearn/MLRepository.html
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.2
  • 47
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • P. Pudil, J. Novovičová, and J. Kittler, "Floating search methods in feature selection," Pattern Rec. Lett., vol. 15, no. 11, pp. 1119-1125, 1994.
    • (1994) Pattern Rec. Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovičová, J.2    Kittler, J.3
  • 48
    • 78149286082 scopus 로고    scopus 로고
    • Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality
    • P. Somol and J. Novovičová, "Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 1921-1939, 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.11 , pp. 1921-1939
    • Somol, P.1    Novovičová, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.