-
3
-
-
0034323731
-
Support vector machine techniques for nonlinear equalization
-
DOI 10.1109/78.875477
-
D. J. Sebald and J. A. Bucklew, "Support vector machine techniques for nonlinear equalization," IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3217-3226, Nov. 2000. (Pubitemid 32027347)
-
(2000)
IEEE Transactions on Signal Processing
, vol.48
, Issue.11
, pp. 3217-3226
-
-
Sebald, D.J.1
Bucklew, J.A.2
-
4
-
-
31144468782
-
Beamforming using support vector machines
-
DOI 10.1109/LAWP.2005.860196
-
M. M. Ramon, N. Xu, and C. Christodoulou, "Beamforming using support vector machines," IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 439-442, Dec. 2005. (Pubitemid 43131829)
-
(2005)
IEEE Antennas and Wireless Propagation Letters
, vol.4
, Issue.1
, pp. 439-442
-
-
Ramon, M.M.1
Xu, N.2
Christodoulou, C.G.3
-
5
-
-
34047166022
-
Support vector echo-state machine for chaotic time-series prediction
-
DOI 10.1109/TNN.2006.885113
-
Z. Shi and M. Han, "Support vector echo-state machine for chaotic time-series prediction," IEEE Trans. Neural Netw., vol. 18, no. 2, pp. 359-372, Mar. 2007. (Pubitemid 46522562)
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.2
, pp. 359-372
-
-
Shi, Z.1
Han, M.2
-
7
-
-
0036258405
-
Support vector machines and the Bayes rule in classification
-
DOI 10.1023/A:1015469627679
-
Y. Lin, "Support vector machines and the Bayes rule in classification," Data Min. Knowl. Discov., vol. 6, no. 3, pp. 259-275, 2002. (Pubitemid 37113866)
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, Issue.3
, pp. 259-275
-
-
Lin, Y.1
-
8
-
-
84898962683
-
Margin maximizing loss functions
-
S. Thrun L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press
-
S. Rosset, J. Zhu, and T. Hastie, "Margin maximizing loss functions," in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004, pp. 1237-1246.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 1237-1246
-
-
Rosset, S.1
Zhu, J.2
Hastie, T.3
-
9
-
-
3142617128
-
Consistency in boosting: Discussion
-
Feb.
-
J. Friedman, T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, "Consistency in boosting: Discussion," Ann. Stat., vol. 32, no. 1, pp. 102-107, Feb. 2004.
-
(2004)
Ann. Stat.
, vol.32
, Issue.1
, pp. 102-107
-
-
Friedman, J.1
Hastie, T.2
Rosset, S.3
Tibshirani, R.4
Zhu, J.5
-
11
-
-
33745561205
-
An introduction to variable and feature selection
-
Oct.-Nov.
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, nos. 7-8, pp. 1157-1182, Oct.-Nov. 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, Issue.7-8
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
12
-
-
1942451938
-
Feature selection for high-dimensional data: A fast correlation-based filter solution
-
Washington D.C.
-
L. Yu and H. Liu, "Feature selection for high-dimensional data: A fast correlation-based filter solution," in Proc. 20th Int. Conf. Mach. Learn., Washington D.C., 2003, pp. 1-8.
-
(2003)
Proc. 20th Int. Conf. Mach. Learn.
, pp. 1-8
-
-
Yu, L.1
Liu, H.2
-
13
-
-
0031381525
-
Wrappers for feature selection
-
R. Kohavi and G. John, "Wrappers for feature selection," Artif. Intell., vol. 97, nos. 1-2, pp. 273-324, 1997.
-
(1997)
Artif. Intell.
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
14
-
-
48949116216
-
A general wrapper approach to selection of class-dependent features
-
Jul.
-
L. Wang, N. Zhou, and F. Chu, "A general wrapper approach to selection of class-dependent features," IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1267-1278, Jul. 2008.
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, Issue.7
, pp. 1267-1278
-
-
Wang, L.1
Zhou, N.2
Chu, F.3
-
15
-
-
85194972808
-
Regression shrinkage and selection via the LASSO
-
R. Tibshirani, "Regression shrinkage and selection via the LASSO," J. Royal Stat. Soc., Ser. B, vol. 58, no. 1, pp. 267-288, 1994.
-
(1994)
J. Royal Stat. Soc., Ser. B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
16
-
-
0001001098
-
Feature selection for SVMs
-
T. L. T. Dietterich and V. Tresp, Eds. Cambridge, MA: MIT Press
-
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik, "Feature selection for SVMs," in Advances in Neural Information Processing Systems 13, T. L. T. Dietterich and V. Tresp, Eds. Cambridge, MA: MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.13
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
17
-
-
1542365112
-
Dimensionality reduction via sparse support vector machines
-
Mar.
-
J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, "Dimensionality reduction via sparse support vector machines," J. Mach. Learn. Res., vol. 3, pp. 1229-1243, Mar. 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1229-1243
-
-
Bi, J.1
Bennett, K.2
Embrechts, M.3
Breneman, C.4
Song, M.5
-
18
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol. 46, nos. 1-3, pp. 389-422, 2002. (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
19
-
-
84890447445
-
Variable selection using SVM based criteria
-
A. Rakotomamonjy, "Variable selection using SVM based criteria," J. Mach. Learn. Res., vol. 3, nos. 7-8, pp. 1357-1370, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, Issue.7-8
, pp. 1357-1370
-
-
Rakotomamonjy, A.1
-
20
-
-
0242417619
-
Feature selection and transduction for prediction of molecular bioactivity for drug design
-
DOI 10.1093/bioinformatics/btg054
-
J. Weston, F. Perez-Cruz, O. Bousquet, O. Chapelle, A. Elisseeff, and B. Scholkopf, "Feature selection and transduction for prediction of molecular bioactivity for drug design," Bioinformatics, vol. 19, no. 6, pp. 764-771, 2003. (Pubitemid 36511901)
-
(2003)
Bioinformatics
, vol.19
, Issue.6
, pp. 764-771
-
-
Weston, J.1
Perez-Cruz, F.2
Bousquet, O.3
Chapelle, O.4
Elisseeff, A.5
Scholkopf, B.6
-
21
-
-
77951939084
-
Margin-maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions
-
May
-
Y. Aksu, D. J. Miller, G. Kesidis, and Q. X. Yang, "Margin- maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions," IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 701-717, May 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.5
, pp. 701-717
-
-
Aksu, Y.1
Miller, D.J.2
Kesidis, G.3
Yang, Q.X.4
-
22
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
DOI 10.1093/biostatistics/kxm045
-
J. Friedman, T. Hastie, and R. Tibshirani, "Sparse inverse covariance estimation with the graphical LASSO," Biostat, vol. 9, no. 3, pp. 432-441, 2008. (Pubitemid 351882084)
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
23
-
-
51049096710
-
Adaptive LASSO for sparse highdimensional regression models
-
C. Z. J. Huang and S. Ma, "Adaptive LASSO for sparse highdimensional regression models," Stat. Sinica, vol. 18, no. 374, pp. 1603-1618, 2008.
-
(2008)
Stat. Sinica
, vol.18
, Issue.374
, pp. 1603-1618
-
-
Huang, C.Z.J.1
Ma, S.2
-
24
-
-
65349193793
-
LASSO-type recovery of sparse representations for high-dimensional data
-
N. Meinshausen and B. Yu, "LASSO-type recovery of sparse representations for high-dimensional data," Ann. Stat., vol. 37, no. 1, pp. 246-270, 2009.
-
(2009)
Ann. Stat.
, vol.37
, Issue.1
, pp. 246-270
-
-
Meinshausen, N.1
Yu, B.2
-
25
-
-
74049144462
-
Voxel selection in fMRI data analysis based on sparse representation
-
Oct.
-
Y. Li, P. Namburi, Z. Yu, C. Guan, J. Feng, and Z. Gu, "Voxel selection in fMRI data analysis based on sparse representation," IEEE Trans. Biomed. Eng., vol. 56, no. 10, pp. 2439-2451, Oct. 2009.
-
(2009)
IEEE Trans. Biomed. Eng.
, vol.56
, Issue.10
, pp. 2439-2451
-
-
Li, Y.1
Namburi, P.2
Yu, Z.3
Guan, C.4
Feng, J.5
Gu, Z.6
-
26
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
P. Bradley and O. L. Mangasarian, "Feature selection via concave minimization and support vector machines," in Proc. 15th Int. Conf. Mach. Learn., 1998, pp. 82-90.
-
(1998)
Proc. 15th Int. Conf. Mach. Learn.
, pp. 82-90
-
-
Bradley, P.1
Mangasarian, O.L.2
-
27
-
-
80051544306
-
Simultaneous relevant feature identification and classification in high-dimensional spaces
-
New York: Springer-Verlag
-
L. R. Grate, C. Bhattacharyya, M. I. Jordan, and I. S. Mian, "Simultaneous relevant feature identification and classification in high-dimensional spaces," in Algorithms in Bioinformatics (Lecture Notes in Computer Science), vol. 2452. New York: Springer-Verlag, 2002, pp. 1-9.
-
(2002)
Algorithms in Bioinformatics (Lecture Notes in Computer Science)
, vol.2452
, pp. 1-9
-
-
Grate, L.R.1
Bhattacharyya, C.2
Jordan, M.I.3
Mian, I.S.4
-
28
-
-
3543109140
-
A feature selection Newton method for support vector machine classification
-
G. M. Fung and O. L. Mangasarian, "A feature selection Newton method for support vector machine classification," Comput. Optim. Appl., vol. 28, no. 2, pp. 185-202, 2004.
-
(2004)
Comput. Optim. Appl.
, vol.28
, Issue.2
, pp. 185-202
-
-
Fung, G.M.1
Mangasarian, O.L.2
-
29
-
-
84899024917
-
1-norm support vector machines
-
S. Thrun L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press
-
J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani, "1-norm support vector machines," in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004, pp. 49-56.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 49-56
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
Tibshirani, R.4
-
30
-
-
33746154240
-
The doubly regularized support vector machine
-
L. Wang, J. Zhu, and H. Zou, "The doubly regularized support vector machine," Stat. Sinica, vol. 16, no. 2, pp. 589-615, 2006. (Pubitemid 44085519)
-
(2006)
Statistica Sinica
, vol.16
, Issue.2
, pp. 589-615
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
31
-
-
33751001047
-
Variable selection for the linear support vector machine
-
K. Chen and L. Wang, Eds. Berlin, Germany: Springer-Verlag
-
J. Zhu and H. Zou, "Variable selection for the linear support vector machine," in Trends in Neural Computation (Studies in Computational Intelligence), vol. 35, K. Chen and L. Wang, Eds. Berlin, Germany: Springer-Verlag, 2007, pp. 35-59.
-
(2007)
Trends in Neural Computation (Studies in Computational Intelligence)
, vol.35
, pp. 35-59
-
-
Zhu, J.1
Zou, H.2
-
32
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
DOI 10.1111/j.1467-9868.2005.00503.x
-
H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," J. Royal Stat. Soc., vol. 67, no. 2, pp. 301-320, Apr. 2005. (Pubitemid 40465877)
-
(2005)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
33
-
-
70449696393
-
An improved 1-norm support vector machine for simultaneous classification and variable selection
-
H. Zou, "An improved 1-norm support vector machine for simultaneous classification and variable selection," in Proc. 11th Int. Conf. Artif. Intell. Stat., 2007, pp. 1-7.
-
(2007)
Proc. 11th Int. Conf. Artif. Intell. Stat.
, pp. 1-7
-
-
Zou, H.1
-
34
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
DOI 10.1111/j.1467-9868.2005.00532.x
-
M. Yuan and Y. Lin, "Model selection and estimation in regression with grouped variables," J. Royal Stat. Soc.: Ser. B (Stat. Methodol.), vol. 68, no. 1, pp. 49-67, Feb. 2006. (Pubitemid 43415335)
-
(2006)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.68
, Issue.1
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
35
-
-
43049089414
-
The F∞-norm support vector machine
-
H. Zou and M. Yuan, "The F∞-norm support vector machine," Stat. Sinica, vol. 18, no. 1, pp. 379-398, 2008.
-
(2008)
Stat. Sinica
, vol.18
, Issue.1
, pp. 379-398
-
-
Zou, H.1
Yuan, M.2
-
36
-
-
17444438778
-
New support vector algorithms
-
May
-
B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, "New support vector algorithms," Neural Comput., vol. 12, no. 5, pp. 1207-1245, May 2000.
-
(2000)
Neural Comput.
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
37
-
-
17644442381
-
Multi-class support vector machines: A new approach
-
Hong Kong Apr.
-
J. Arenas-García and F. Pérez-Cruz, "Multi-class support vector machines: A new approach," in Proc. Int. Conf. Acoust., Speech, Signal Process., vol. 2. Hong Kong, Apr. 2003, pp. 781-784.
-
(2003)
Proc. Int. Conf. Acoust., Speech, Signal Process.
, vol.2
, pp. 781-784
-
-
Arenas-García, J.1
Pérez-Cruz, F.2
-
39
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol. 46, nos. 1-3, pp. 389-422, 2002. (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
|