메뉴 건너뛰기




Volumn 22, Issue 8, 2011, Pages 1269-1283

Support vector machines with constraints for sparsity in the primal parameters

Author keywords

Feature group selection; feature selection; margin maximization; multiclass classification; support vector machines

Indexed keywords

COMPUTATIONAL BURDEN; FEATURE GROUPS; LINEAR FEATURE; MARGIN MAXIMIZATION; MULTI-CLASS CLASSIFICATION; SPARSE CLASSIFIERS; SPARSE SOLUTIONS; STATE OF THE ART; SUPPORT VECTOR; SYNTHETIC AND REAL DATA;

EID: 80051545883     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2011.2148727     Document Type: Article
Times cited : (9)

References (40)
  • 3
    • 0034323731 scopus 로고    scopus 로고
    • Support vector machine techniques for nonlinear equalization
    • DOI 10.1109/78.875477
    • D. J. Sebald and J. A. Bucklew, "Support vector machine techniques for nonlinear equalization," IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3217-3226, Nov. 2000. (Pubitemid 32027347)
    • (2000) IEEE Transactions on Signal Processing , vol.48 , Issue.11 , pp. 3217-3226
    • Sebald, D.J.1    Bucklew, J.A.2
  • 5
    • 34047166022 scopus 로고    scopus 로고
    • Support vector echo-state machine for chaotic time-series prediction
    • DOI 10.1109/TNN.2006.885113
    • Z. Shi and M. Han, "Support vector echo-state machine for chaotic time-series prediction," IEEE Trans. Neural Netw., vol. 18, no. 2, pp. 359-372, Mar. 2007. (Pubitemid 46522562)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.2 , pp. 359-372
    • Shi, Z.1    Han, M.2
  • 7
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • DOI 10.1023/A:1015469627679
    • Y. Lin, "Support vector machines and the Bayes rule in classification," Data Min. Knowl. Discov., vol. 6, no. 3, pp. 259-275, 2002. (Pubitemid 37113866)
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.3 , pp. 259-275
    • Lin, Y.1
  • 8
    • 84898962683 scopus 로고    scopus 로고
    • Margin maximizing loss functions
    • S. Thrun L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press
    • S. Rosset, J. Zhu, and T. Hastie, "Margin maximizing loss functions," in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004, pp. 1237-1246.
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 1237-1246
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 11
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Oct.-Nov.
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, nos. 7-8, pp. 1157-1182, Oct.-Nov. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , Issue.7-8 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 12
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • Washington D.C.
    • L. Yu and H. Liu, "Feature selection for high-dimensional data: A fast correlation-based filter solution," in Proc. 20th Int. Conf. Mach. Learn., Washington D.C., 2003, pp. 1-8.
    • (2003) Proc. 20th Int. Conf. Mach. Learn. , pp. 1-8
    • Yu, L.1    Liu, H.2
  • 13
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature selection
    • R. Kohavi and G. John, "Wrappers for feature selection," Artif. Intell., vol. 97, nos. 1-2, pp. 273-324, 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 14
    • 48949116216 scopus 로고    scopus 로고
    • A general wrapper approach to selection of class-dependent features
    • Jul.
    • L. Wang, N. Zhou, and F. Chu, "A general wrapper approach to selection of class-dependent features," IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1267-1278, Jul. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.7 , pp. 1267-1278
    • Wang, L.1    Zhou, N.2    Chu, F.3
  • 15
    • 85194972808 scopus 로고
    • Regression shrinkage and selection via the LASSO
    • R. Tibshirani, "Regression shrinkage and selection via the LASSO," J. Royal Stat. Soc., Ser. B, vol. 58, no. 1, pp. 267-288, 1994.
    • (1994) J. Royal Stat. Soc., Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 17
    • 1542365112 scopus 로고    scopus 로고
    • Dimensionality reduction via sparse support vector machines
    • Mar.
    • J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, "Dimensionality reduction via sparse support vector machines," J. Mach. Learn. Res., vol. 3, pp. 1229-1243, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1229-1243
    • Bi, J.1    Bennett, K.2    Embrechts, M.3    Breneman, C.4    Song, M.5
  • 18
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol. 46, nos. 1-3, pp. 389-422, 2002. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 19
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM based criteria
    • A. Rakotomamonjy, "Variable selection using SVM based criteria," J. Mach. Learn. Res., vol. 3, nos. 7-8, pp. 1357-1370, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , Issue.7-8 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 20
    • 0242417619 scopus 로고    scopus 로고
    • Feature selection and transduction for prediction of molecular bioactivity for drug design
    • DOI 10.1093/bioinformatics/btg054
    • J. Weston, F. Perez-Cruz, O. Bousquet, O. Chapelle, A. Elisseeff, and B. Scholkopf, "Feature selection and transduction for prediction of molecular bioactivity for drug design," Bioinformatics, vol. 19, no. 6, pp. 764-771, 2003. (Pubitemid 36511901)
    • (2003) Bioinformatics , vol.19 , Issue.6 , pp. 764-771
    • Weston, J.1    Perez-Cruz, F.2    Bousquet, O.3    Chapelle, O.4    Elisseeff, A.5    Scholkopf, B.6
  • 21
    • 77951939084 scopus 로고    scopus 로고
    • Margin-maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions
    • May
    • Y. Aksu, D. J. Miller, G. Kesidis, and Q. X. Yang, "Margin- maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions," IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 701-717, May 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.5 , pp. 701-717
    • Aksu, Y.1    Miller, D.J.2    Kesidis, G.3    Yang, Q.X.4
  • 22
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • DOI 10.1093/biostatistics/kxm045
    • J. Friedman, T. Hastie, and R. Tibshirani, "Sparse inverse covariance estimation with the graphical LASSO," Biostat, vol. 9, no. 3, pp. 432-441, 2008. (Pubitemid 351882084)
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 23
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive LASSO for sparse highdimensional regression models
    • C. Z. J. Huang and S. Ma, "Adaptive LASSO for sparse highdimensional regression models," Stat. Sinica, vol. 18, no. 374, pp. 1603-1618, 2008.
    • (2008) Stat. Sinica , vol.18 , Issue.374 , pp. 1603-1618
    • Huang, C.Z.J.1    Ma, S.2
  • 24
    • 65349193793 scopus 로고    scopus 로고
    • LASSO-type recovery of sparse representations for high-dimensional data
    • N. Meinshausen and B. Yu, "LASSO-type recovery of sparse representations for high-dimensional data," Ann. Stat., vol. 37, no. 1, pp. 246-270, 2009.
    • (2009) Ann. Stat. , vol.37 , Issue.1 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 25
    • 74049144462 scopus 로고    scopus 로고
    • Voxel selection in fMRI data analysis based on sparse representation
    • Oct.
    • Y. Li, P. Namburi, Z. Yu, C. Guan, J. Feng, and Z. Gu, "Voxel selection in fMRI data analysis based on sparse representation," IEEE Trans. Biomed. Eng., vol. 56, no. 10, pp. 2439-2451, Oct. 2009.
    • (2009) IEEE Trans. Biomed. Eng. , vol.56 , Issue.10 , pp. 2439-2451
    • Li, Y.1    Namburi, P.2    Yu, Z.3    Guan, C.4    Feng, J.5    Gu, Z.6
  • 26
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • P. Bradley and O. L. Mangasarian, "Feature selection via concave minimization and support vector machines," in Proc. 15th Int. Conf. Mach. Learn., 1998, pp. 82-90.
    • (1998) Proc. 15th Int. Conf. Mach. Learn. , pp. 82-90
    • Bradley, P.1    Mangasarian, O.L.2
  • 28
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • G. M. Fung and O. L. Mangasarian, "A feature selection Newton method for support vector machine classification," Comput. Optim. Appl., vol. 28, no. 2, pp. 185-202, 2004.
    • (2004) Comput. Optim. Appl. , vol.28 , Issue.2 , pp. 185-202
    • Fung, G.M.1    Mangasarian, O.L.2
  • 29
    • 84899024917 scopus 로고    scopus 로고
    • 1-norm support vector machines
    • S. Thrun L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press
    • J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani, "1-norm support vector machines," in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004, pp. 49-56.
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 49-56
    • Zhu, J.1    Rosset, S.2    Hastie, T.3    Tibshirani, R.4
  • 30
    • 33746154240 scopus 로고    scopus 로고
    • The doubly regularized support vector machine
    • L. Wang, J. Zhu, and H. Zou, "The doubly regularized support vector machine," Stat. Sinica, vol. 16, no. 2, pp. 589-615, 2006. (Pubitemid 44085519)
    • (2006) Statistica Sinica , vol.16 , Issue.2 , pp. 589-615
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 31
    • 33751001047 scopus 로고    scopus 로고
    • Variable selection for the linear support vector machine
    • K. Chen and L. Wang, Eds. Berlin, Germany: Springer-Verlag
    • J. Zhu and H. Zou, "Variable selection for the linear support vector machine," in Trends in Neural Computation (Studies in Computational Intelligence), vol. 35, K. Chen and L. Wang, Eds. Berlin, Germany: Springer-Verlag, 2007, pp. 35-59.
    • (2007) Trends in Neural Computation (Studies in Computational Intelligence) , vol.35 , pp. 35-59
    • Zhu, J.1    Zou, H.2
  • 33
    • 70449696393 scopus 로고    scopus 로고
    • An improved 1-norm support vector machine for simultaneous classification and variable selection
    • H. Zou, "An improved 1-norm support vector machine for simultaneous classification and variable selection," in Proc. 11th Int. Conf. Artif. Intell. Stat., 2007, pp. 1-7.
    • (2007) Proc. 11th Int. Conf. Artif. Intell. Stat. , pp. 1-7
    • Zou, H.1
  • 35
    • 43049089414 scopus 로고    scopus 로고
    • The F∞-norm support vector machine
    • H. Zou and M. Yuan, "The F∞-norm support vector machine," Stat. Sinica, vol. 18, no. 1, pp. 379-398, 2008.
    • (2008) Stat. Sinica , vol.18 , Issue.1 , pp. 379-398
    • Zou, H.1    Yuan, M.2
  • 39
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol. 46, nos. 1-3, pp. 389-422, 2002. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.