-
3
-
-
0032638628
-
Least squares support vector machine classifiers
-
June
-
J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol.9, pp. 293-300, June 1999.
-
(1999)
Neural Process. Lett.
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
4
-
-
4043137356
-
A tutorial on support vector regression
-
Aug.
-
A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Statist. Comput., vol.14, pp. 199-222, Aug. 2004.
-
(2004)
Statist. Comput.
, vol.14
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
5
-
-
33846086864
-
Nonlinear knowledge in kernel approximation
-
Jan.
-
O. L. Mangasarian and E. W. Wild, "Nonlinear knowledge in kernel approximation," IEEE Trans. Neural Netw., vol.18, no.1, pp. 300-306, Jan. 2007.
-
(2007)
IEEE Trans. Neural Netw.
, vol.18
, Issue.1
, pp. 300-306
-
-
Mangasarian, O.L.1
Wild, E.W.2
-
6
-
-
36849072437
-
Incorporating prior knowledge in support vector regression
-
F. Lauer and G. Bloch, "Incorporating prior knowledge in support vector regression," Mach. Learn., vol.70, pp. 89-118, 2008.
-
(2008)
Mach. Learn.
, vol.70
, pp. 89-118
-
-
Lauer, F.1
Bloch, G.2
-
7
-
-
25444441746
-
Primal-dual monotone kernel regression
-
Oct.
-
K. Pelckmans, M. Espinoza, J. De Brabanter, J. A. K. Suykens, and B. De Moor, "Primal-dual monotone kernel regression," Neural Process. Lett., vol.22, pp. 171-182, Oct. 2005.
-
(2005)
Neural Process. Lett.
, vol.22
, pp. 171-182
-
-
Pelckmans, K.1
Espinoza, M.2
De Brabanter, J.3
Suykens, J.A.K.4
De Moor, B.5
-
8
-
-
29344472579
-
Knowledge-based kernel approximation
-
Sep.
-
O. L. Mangasarian, J. W. Shavlik, and E. W.Wild, "Knowledge-based kernel approximation," J. Mach. Learn. Res., vol.5, pp. 1127-1141, Sep. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1127-1141
-
-
Mangasarian, O.L.1
Shavlik, J.W.2
Wild, E.W.3
-
9
-
-
8644243812
-
Incorporating prior knowledge into artificial neural networks-An industrial case study
-
S. Milanic, S. Strmcnik, D. Sel, N. Hvala, and R. Karba, "Incorporating prior knowledge into artificial neural networks-An industrial case study," Neurocomputing, vol.62, pp. 131-151, 2004.
-
(2004)
Neurocomputing
, vol.62
, pp. 131-151
-
-
Milanic, S.1
Strmcnik, S.2
Sel, D.3
Hvala, N.4
Karba, R.5
-
10
-
-
0030109138
-
Identification of non-linear systems using empirical data and prior knowledge-An optimization approach
-
T. A. Johansen, "Identification of non-linear systems using empirical data and prior knowledge-An optimization approach," Automatica, vol.32, pp. 337-356, 1996.
-
(1996)
Automatica
, vol.32
, pp. 337-356
-
-
Johansen, T.A.1
-
11
-
-
0034740046
-
Prior-knowledge-based feedforward network simulation of true boiling point curve of crude oil
-
C. W. Chen and D. Z. Chen, "Prior-knowledge-based feedforward network simulation of true boiling point curve of crude oil," Comput. Chem., vol.25, pp. 541-550, 2001.
-
(2001)
Comput. Chem.
, vol.25
, pp. 541-550
-
-
Chen, C.W.1
Chen, D.Z.2
-
12
-
-
0026382928
-
Encoding a prior information in feedforward networks
-
W. H. Joerding and J. L. Meador, "Encoding a prior information in feedforward networks," Neural Netw., vol.4, pp. 847-856, 1991.
-
(1991)
Neural Netw.
, vol.4
, pp. 847-856
-
-
Joerding, W.H.1
Meador, J.L.2
-
13
-
-
71449127345
-
Nonlinear model based control with prior knowledge based learning
-
Hong Kong, China
-
Z. Sun, Z. K. Zhang, H. G. Wang, and M. Jiang, "Nonlinear model based control with prior knowledge based learning," in Proc. Asian Control Conf., Hong Kong, China, 2009, pp. 1576-1581.
-
(2009)
Proc. Asian Control Conf.
, pp. 1576-1581
-
-
Sun, Z.1
Zhang, Z.K.2
Wang, H.G.3
Jiang, M.4
-
15
-
-
0032275277
-
Relaxed cutting plane method for solving linear semi-infinite programming problems
-
S. Y.Wu, S. C. Fang, and C. J. Lin, "Relaxed cutting plane method for solving linear semi-infinite programming problems," J. Optim. Theory Appl., vol.99, pp. 759-779, 1998.
-
(1998)
J. Optim. Theory Appl.
, vol.99
, pp. 759-779
-
-
Wu, S.Y.1
Fang, S.C.2
Lin, C.J.3
-
17
-
-
0003408420
-
-
Cambridge, MA: MIT Press
-
B. Schölkopf and A. J. Smola, Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
|