메뉴 건너뛰기




Volumn 41, Issue 12, 2011, Pages 1156-1165

Effective connectivity analysis of fMRI and MEG data collected under identical paradigms

Author keywords

Bayesian networks; Effective connectivity; FMRI; MEG

Indexed keywords

BRAIN NETWORKS; BRAIN REGIONS; COMPLEX NETWORKS; CONNECTIVITY ANALYSIS; EFFECTIVE CONNECTIVITY; FMRI; FMRI DATA; FUNCTIONAL DATAS; FUNCTIONAL MRI; LIMITED INFORMATION; MEG; MULTIPLE MODALITIES;

EID: 82955233833     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2011.04.011     Document Type: Article
Times cited : (38)

References (68)
  • 2
    • 82955164855 scopus 로고    scopus 로고
    • The noisy brain: stochastic dynamics as a principle of brain function
    • E.T. Rolls, G. Deco, The noisy brain: stochastic dynamics as a principle of brain function, 2010.
    • (2010)
    • Rolls, E.T.1    Deco, G.2
  • 9
    • 26244462082 scopus 로고
    • Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain
    • Hämäläinen M.S., Hari R., Ilmoniemi R.J., Knuutila J., Lounasmaa O.V. Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics 1993, 65:413-497.
    • (1993) Reviews of Modern Physics , vol.65 , pp. 413-497
    • Hämäläinen, M.S.1    Hari, R.2    Ilmoniemi, R.J.3    Knuutila, J.4    Lounasmaa, O.V.5
  • 11
    • 84927797165 scopus 로고    scopus 로고
    • Multimodal integration: fMRI, MRI, EEG, and MEG, Signal Processing and Communications, Dekker, (Chapter 8).
    • Y.O. Halchenko, S.J. Hanson, B.A. Pearlmutter, Multimodal integration: fMRI, MRI, EEG, and MEG, Signal Processing and Communications, Dekker, 2005, pp. 223-265 (Chapter 8).
    • (2005) , pp. 223-265
    • Halchenko, Y.O.1    Hanson, S.J.2    Pearlmutter, B.A.3
  • 13
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: a synthesis
    • Friston K.J. Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping 1994, 2(1-2):56-78.
    • (1994) Human Brain Mapping , vol.2 , Issue.1-2 , pp. 56-78
    • Friston, K.J.1
  • 15
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • Friston K.J., Harrison L., Penny W. Dynamic causal modelling. NeuroImage 2003, 19(4):1273-1302. 〈http://dx.doi.org/10.1016/S1053-8119(03) 00202-7〉.
    • (2003) NeuroImage , vol.19 , Issue.4 , pp. 1273-1302
    • Friston, K.J.1    Harrison, L.2    Penny, W.3
  • 16
    • 84894912254 scopus 로고
    • Measurement of linear dependence and feedback between multiple time series
    • Geweke J. Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association 1982, 77(378):304-313.
    • (1982) Journal of the American Statistical Association , vol.77 , Issue.378 , pp. 304-313
    • Geweke, J.1
  • 17
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain using Granger causality and fMRI
    • Roebroeck A., Formisano E., Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage 2005, 25(1):230-242.
    • (2005) NeuroImage , vol.25 , Issue.1 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 20
    • 43049097125 scopus 로고    scopus 로고
    • Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move
    • Grzegorczyk M., Husmeier D. Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move. Machine Learning 2008, 71(2-3):265-305. 〈http://dx.doi.org/10.1007/s10994-008-5057-7〉.
    • (2008) Machine Learning , vol.71 , Issue.2-3 , pp. 265-305
    • Grzegorczyk, M.1    Husmeier, D.2
  • 21
    • 58149350434 scopus 로고    scopus 로고
    • Discrete dynamic Bayesian network analysis of fMRI data, Human Brain Mapping 〈〉, doi:10.1002/hbm.20490.
    • J. Burge, T. Lane, H. Link, S. Qiu, V.P. Clark, Discrete dynamic Bayesian network analysis of fMRI data, Human Brain Mapping 〈〉, doi:10.1002/hbm.20490. http://dx.doi.org/10.1002/hbm.20490.
    • Burge, J.1    Lane, T.2    Link, H.3    Qiu, S.4    Clark, V.P.5
  • 22
    • 55349122522 scopus 로고    scopus 로고
    • Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia
    • Kim D., Burge J., Lane T., Pearlson G.D., Kiehl K.A., Calhoun V.D. Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia. NeuroImage 2008, 42(4):1560-1568.
    • (2008) NeuroImage , vol.42 , Issue.4 , pp. 1560-1568
    • Kim, D.1    Burge, J.2    Lane, T.3    Pearlson, G.D.4    Kiehl, K.A.5    Calhoun, V.D.6
  • 25
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: uses and interpretations
    • Rubinov M., Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 2010, 52(3):1059-1069. 〈http://dx.doi.org/10.1016/j.neuroimage.2009.10.003〉. 10.1016/j.neuroimage.2009.10.003.
    • (2010) NeuroImage , vol.52 , Issue.3 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 29
    • 82955178072 scopus 로고    scopus 로고
    • The Bayes net toolbox for MATLAB.
    • K.P. Murphy, The Bayes net toolbox for MATLAB.
    • Murphy, K.P.1
  • 30
    • 61749099368 scopus 로고    scopus 로고
    • Python environment for Bayesian learning: inferring the structure of Bayesian networks from knowledge and data
    • Shah A., Woolf P. Python environment for Bayesian learning: inferring the structure of Bayesian networks from knowledge and data. Journal of Machine Learning Research 2009, 10:159-162.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 159-162
    • Shah, A.1    Woolf, P.2
  • 31
  • 32
    • 2942564706 scopus 로고    scopus 로고
    • Detecting community structure in networks
    • Newman M.E.J. Detecting community structure in networks. The European Physical Journal B - Condensed Matter 2004, 38(2):321. 〈http://dx.doi.org/10.1140/epjb/e2004-00124-y〉. 10.1140/epjb/e2004-00124-y.
    • (2004) The European Physical Journal B - Condensed Matter , vol.38 , Issue.2 , pp. 321
    • Newman, M.E.J.1
  • 33
    • 0037062448 scopus 로고    scopus 로고
    • Community structure in social and biological networks
    • Girvan M., Newman M.E.J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences 2002, 99(12):7821. 〈http://dx.doi.org/10.1073/pnas.122653799〉. 10.1073/pnas.122653799.
    • (2002) Proceedings of the National Academy of Sciences , vol.99 , Issue.12 , pp. 7821
    • Girvan, M.1    Newman, M.E.J.2
  • 34
    • 0042635247 scopus 로고    scopus 로고
    • Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality
    • Newman M.E.J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E 2001, 64(1):016132. 〈http://dx.doi.org/10.1103/PhysRevE.64.016132〉. 10.1103/PhysRevE.64.016132.
    • (2001) Physical Review E , vol.64 , Issue.1 , pp. 016132
    • Newman, M.E.J.1
  • 35
    • 2342586800 scopus 로고    scopus 로고
    • Interpreting the BOLD signal
    • Logothetis N.K., Wandell B.A. Interpreting the BOLD signal. Annual Review of Physiology 2004, 66(1):735-769. 〈http://dx.doi.org/10.1146/annurev.physiol.66.082602.092845〉. 10.1146/annurev.physiol.66.082602. 092845.
    • (2004) Annual Review of Physiology , vol.66 , Issue.1 , pp. 735-769
    • Logothetis, N.K.1    Wandell, B.A.2
  • 37
    • 25844432097 scopus 로고    scopus 로고
    • Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data
    • Jun S.-C., George J.S., Pare-Blagoev J., Plis S.M., Ranken D.M., Schmidt D.M., Wood C.C. Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data. NeuroImage 2005, 28(1):84-98. 〈http://dx.doi.org/10.1016/j.neuroimage.2005.06.003〉. 10.1016/j.neuroimage.2005.06.003.
    • (2005) NeuroImage , vol.28 , Issue.1 , pp. 84-98
    • Jun, S.-C.1    George, J.S.2    Pare-Blagoev, J.3    Plis, S.M.4    Ranken, D.M.5    Schmidt, D.M.6    Wood, C.C.7
  • 41
    • 36048949958 scopus 로고    scopus 로고
    • Dynamic causal modelling for fMRI: a two-state model
    • Marreiros A.C., Kiebel S.J., Friston K.J. Dynamic causal modelling for fMRI: a two-state model. NeuroImage 2008, 39(1):269-278. 〈http://dx.doi.org/10.1016/j.neuroimage.2007.08.019〉. 10.1016/j.neuroimage.2007.08.019.
    • (2008) NeuroImage , vol.39 , Issue.1 , pp. 269-278
    • Marreiros, A.C.1    Kiebel, S.J.2    Friston, K.J.3
  • 42
    • 44249123488 scopus 로고    scopus 로고
    • Dynamic Bayesian network modeling of fMRI: a comparison of group-analysis methods
    • Li J., Wang Z.J., Palmer S.J., McKeown M.J. Dynamic Bayesian network modeling of fMRI: a comparison of group-analysis methods. NeuroImage 2008, 41(2):398-407. 〈http://www.hubmed.org/display.cgi?uids=18406629〉. 10.1016/j.neuroimage.2008.01.068.
    • (2008) NeuroImage , vol.41 , Issue.2 , pp. 398-407
    • Li, J.1    Wang, Z.J.2    Palmer, S.J.3    McKeown, M.J.4
  • 43
    • 33846571843 scopus 로고    scopus 로고
    • Dynamic causal modeling: a generative model of slice timing in fMRI
    • Kiebel S.J., Kloppel S., Weiskopf N., Friston K.J. Dynamic causal modeling: a generative model of slice timing in fMRI. NeuroImage 2007, 34(4):1487-1496. 〈http://dx.doi.org/10.1016/j.neuroimage.2006.10.026〉. 10.1016/j.neuroimage.2006.10.026.
    • (2007) NeuroImage , vol.34 , Issue.4 , pp. 1487-1496
    • Kiebel, S.J.1    Kloppel, S.2    Weiskopf, N.3    Friston, K.J.4
  • 44
    • 33646137121 scopus 로고    scopus 로고
    • Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization
    • Kiebel S.J., David O., Friston K.J. Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. NeuroImage 2006, 30(4):1273-1284. 〈http://dx.doi.org/10.1016/j.neuroimage.2005.12.055〉. 10.1016/j.neuroimage.2005.12.055.
    • (2006) NeuroImage , vol.30 , Issue.4 , pp. 1273-1284
    • Kiebel, S.J.1    David, O.2    Friston, K.J.3
  • 45
    • 0034115341 scopus 로고    scopus 로고
    • Responses to rare visual target and distractor stimuli using event-related fMRI
    • Clark V.P., Fannon S., Lai S., Benson R., Bauer L. Responses to rare visual target and distractor stimuli using event-related fMRI. Journal of Neurophysiology 2000, 83(5):3133-3139.
    • (2000) Journal of Neurophysiology , vol.83 , Issue.5 , pp. 3133-3139
    • Clark, V.P.1    Fannon, S.2    Lai, S.3    Benson, R.4    Bauer, L.5
  • 46
    • 0030175198 scopus 로고    scopus 로고
    • AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
    • Cox R.W., et al. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research 1996, 29(3):162-173.
    • (1996) Computers and Biomedical Research , vol.29 , Issue.3 , pp. 162-173
    • Cox, R.W.1
  • 47
    • 1842452806 scopus 로고    scopus 로고
    • Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data
    • Hauk O. Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data. NeuroImage 2004, 21(4):1612-1621.
    • (2004) NeuroImage , vol.21 , Issue.4 , pp. 1612-1621
    • Hauk, O.1
  • 50
    • 34247384639 scopus 로고    scopus 로고
    • Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework
    • Daunizeau J., Grova C., Marrelec G., Mattout J., Jbabdi S., Pélégrini-Issac M., Lina J.M., Benali H. Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. NeuroImage 2007, 36(1):69-87. 〈http://dx.doi.org/10.1016/j.neuroimage.2007.01.044〉. 10.1016/j.neuroimage.2007.01.044.
    • (2007) NeuroImage , vol.36 , Issue.1 , pp. 69-87
    • Daunizeau, J.1    Grova, C.2    Marrelec, G.3    Mattout, J.4    Jbabdi, S.5    Pélégrini-Issac, M.6    Lina, J.M.7    Benali, H.8
  • 52
    • 7044262195 scopus 로고    scopus 로고
    • Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study
    • Bledowski C., Prvulovic D., Hoechstetter K., Scherg M., Wibral M., Goebel R., Linden D.E.J. Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. Journal of Neuroscience 2004, 24(42):9353-9360. 〈http://dx.doi.org/10.1523/JNEUROSCI.1897-04.2004〉. 10.1523/JNEUROSCI.1897-04.2004.
    • (2004) Journal of Neuroscience , vol.24 , Issue.42 , pp. 9353-9360
    • Bledowski, C.1    Prvulovic, D.2    Hoechstetter, K.3    Scherg, M.4    Wibral, M.5    Goebel, R.6    Linden, D.E.J.7
  • 54
    • 0027074851 scopus 로고
    • The P300 wave of the human event-related potential
    • Picton T.W. The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology 1992, 9(4):456.
    • (1992) Journal of Clinical Neurophysiology , vol.9 , Issue.4 , pp. 456
    • Picton, T.W.1
  • 55
    • 0023273689 scopus 로고
    • The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure
    • Näätänen R., Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 1987, 24(4):375-425.
    • (1987) Psychophysiology , vol.24 , Issue.4 , pp. 375-425
    • Näätänen, R.1    Picton, T.2
  • 56
    • 36549081532 scopus 로고    scopus 로고
    • The mismatch negativity in basic research of central auditory processing: a review
    • Näätänen R., Paavilainen P., Rinne T., Alho K. The mismatch negativity in basic research of central auditory processing: a review. Clinical Neurophysiology 2007, 118(12):2544-2590. 〈http://dx.doi.org/10.1016/j.clinph.2007.04.026〉. 10.1016/j.clinph.2007.04.026.
    • (2007) Clinical Neurophysiology , vol.118 , Issue.12 , pp. 2544-2590
    • Näätänen, R.1    Paavilainen, P.2    Rinne, T.3    Alho, K.4
  • 58
    • 33750959053 scopus 로고    scopus 로고
    • Dynamic Bayesian networks (DBNS) demonstrate impaired brain connectivity during performance of simultaneous movements in Parkinson's disease
    • IEEE
    • Li J., Wang Z.J., McKeown M.J. Dynamic Bayesian networks (DBNS) demonstrate impaired brain connectivity during performance of simultaneous movements in Parkinson's disease. 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006 2006, 964-967. IEEE.
    • (2006) 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006 , pp. 964-967
    • Li, J.1    Wang, Z.J.2    McKeown, M.J.3
  • 59
    • 82955178066 scopus 로고    scopus 로고
    • Efficient sequential inference in DBNs: steps towards joint MEG/fMRI connectivity analysis
    • S.M. Plis, V.D. Calhoun, M.P. Weisend, T. Eichele, E. Besada-Portas, T. Lane, Efficient sequential inference in DBNs: steps towards joint MEG/fMRI connectivity analysis, 2009.
    • (2009)
    • Plis, S.M.1    Calhoun, V.D.2    Weisend, M.P.3    Eichele, T.4    Besada-Portas, E.5    Lane, T.6
  • 60
    • 31844446085 scopus 로고    scopus 로고
    • Network analysis of mild cognitive impairment
    • Chen R., Herskovits E.H. Network analysis of mild cognitive impairment. NeuroImage 2006, 29(4):1252-1259. 〈http://dx.doi.org/10.1016/j.neuroimage.2005.08.020〉. 10.1016/j.neuroimage.2005.08. 020.
    • (2006) NeuroImage , vol.29 , Issue.4 , pp. 1252-1259
    • Chen, R.1    Herskovits, E.H.2
  • 63
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. Inferring cellular networks using probabilistic graphical models. Science 2004, 303(5659):799.
    • (2004) Science , vol.303 , Issue.5659 , pp. 799
    • Friedman, N.1
  • 64
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E., Shapira M., Regev A., Pe'er D., Botstein D., Koller D., Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 2003, 34(2):166-176.
    • (2003) Nature Genetics , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 67
    • 77955306267 scopus 로고    scopus 로고
    • Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data
    • Havlicek M., Jan J., Brazdil M., Calhoun V.D. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data. NeuroImage 2010, 53(1):65-77. 〈http://dx.doi.org/10.1016/j.neuroimage.2010.05.063〉. 10.1016/j.neuroimage.2010.05.063.
    • (2010) NeuroImage , vol.53 , Issue.1 , pp. 65-77
    • Havlicek, M.1    Jan, J.2    Brazdil, M.3    Calhoun, V.D.4
  • 68
    • 84855185103 scopus 로고    scopus 로고
    • MEG and fMRI fusion for nonlinear estimation of neural and BOLD signal changes
    • Plis S.M., Calhoun V.D., Eichele T., Weisend M.P., Lane T. MEG and fMRI fusion for nonlinear estimation of neural and BOLD signal changes. Frontiers in Neuroinformatics 2010, 4:12. 〈http://dx.doi.org/10.3389/fninf.2010.00114〉. 10.3389/fninf.2010.00114.
    • (2010) Frontiers in Neuroinformatics , vol.4 , pp. 12
    • Plis, S.M.1    Calhoun, V.D.2    Eichele, T.3    Weisend, M.P.4    Lane, T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.