메뉴 건너뛰기




Volumn 60, Issue 1, 2012, Pages 260-279

A neurocomputing approach to predict monsoon rainfall in monthly scale using SST anomaly as a predictor

Author keywords

artificial neural network (ANN); monthly rainfall forecast; sea surface temperature (SST)

Indexed keywords

AGRICULTURAL PRACTICES; ARTIFICIAL NEURAL NETWORK; EASTERN INDIA; MONSOON RAINFALL; MONTHLY RAINFALL FORECAST; MONTHLY SCALE; NEUROCOMPUTING; SEA SURFACE TEMPERATURE ANOMALIES; SEA SURFACE TEMPERATURES; SST ANOMALIES; SUMMER MONSOON; SUMMER MONSOON RAINFALL;

EID: 82655173896     PISSN: 18956572     EISSN: 18957455     Source Type: Journal    
DOI: 10.2478/s11600-011-0044-y     Document Type: Article
Times cited : (35)

References (70)
  • 1
    • 80052706342 scopus 로고    scopus 로고
    • Performance of GCMs for seasonal prediction over India-a case study for 2009 monsoon
    • DOI: 10. 1007/s00704-010-0396-2 (in print)
    • Acharya, N., S. C. Kar, U. C. Mohanty, M. A. Kulkarni, and S. K. Dash (2011), Performance of GCMs for seasonal prediction over India-a case study for 2009 monsoon, Theor. Appl. Climatol., DOI: 10. 1007/s00704-010-0396-2 (in print).
    • (2011) Theor. Appl. Climatol.
    • Acharya, N.1    Kar, S.C.2    Mohanty, U.C.3    Kulkarni, M.A.4    Dash, S.K.5
  • 2
    • 0004274017 scopus 로고
    • Pune, India: Indian Institute of Tropical Meteorology
    • Asnani, G. C. (1993), Tropical Meteorology, vol. 1, Indian Institute of Tropical Meteorology, Pune, India.
    • (1993) Tropical Meteorology , vol.1
    • Asnani, G.C.1
  • 3
    • 78649549794 scopus 로고    scopus 로고
    • Spatial pattern of trends in Indian sub-divisional rainfallnih
    • Basistha, A., N. K. Goel, D. S. Arya, and S. K. Gangwar (2007), Spatial pattern of trends in Indian sub-divisional rainfallnih, Jalvigyan Sameeksha22, 47-57.
    • (2007) Jalvigyan Sameeksha , vol.22 , pp. 47-57
    • Basistha, A.1    Goel, N.K.2    Arya, D.S.3    Gangwar, S.K.4
  • 5
    • 34748882377 scopus 로고    scopus 로고
    • Artificial neural network with backpropagation learning to predict mean monthly total ozone in Arosa, Switzerland
    • Chattopadhyay, S., and G. Bandyopadhyay (2007), Artificial neural network with backpropagation learning to predict mean monthly total ozone in Arosa, Switzerland, Int. J. Remote Sens. 28, 20, 4471-4482, DOI: 10. 1080/01431160701250440.
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.20 , pp. 4471-4482
    • Chattopadhyay, S.1    Bandyopadhyay, G.2
  • 6
    • 47049108092 scopus 로고    scopus 로고
    • Comparative study among different neural net learning algorithms applied to rainfall time series
    • Chattopadhyay, S., and G. Chattopadhyay (2008), Comparative study among different neural net learning algorithms applied to rainfall time series, Meteorol. Appl. 15, 2, 273-280, DOI: 10. 1002/met. 71.
    • (2008) Meteorol. Appl. , vol.15 , Issue.2 , pp. 273-280
    • Chattopadhyay, S.1    Chattopadhyay, G.2
  • 7
    • 70349410588 scopus 로고    scopus 로고
    • Estimating potential evapotranspiration from limited weather data over Gangetic West Bengal, India: A neurocomputing approach
    • Chattopadhyay, S., R. Jain, and G. Chattopadhyay (2009), Estimating potential evapotranspiration from limited weather data over Gangetic West Bengal, India: A neurocomputing approach, Meteorol. Appl. 16, 403-411, DOI: 10. 1002/met. 138.
    • (2009) Meteorol. Appl. , vol.16 , pp. 403-411
    • Chattopadhyay, S.1    Jain, R.2    Chattopadhyay, G.3
  • 8
    • 34547096475 scopus 로고    scopus 로고
    • The influence of tropical Indian Ocean SST on the Indian summer monsoon
    • Cherchi, A., S. Gualdi, S. Behera, J. J. Luo, S. Masson, T. Yamagata, and A. Navarra (2007), The influence of tropical Indian Ocean SST on the Indian summer monsoon, J. Climate20, 3083-3105, DOI: 10. 1175/JCLI4161. 1.
    • (2007) J. Climate , vol.20 , pp. 3083-3105
    • Cherchi, A.1    Gualdi, S.2    Behera, S.3    Luo, J.J.4    Masson, S.5    Yamagata, T.6    Navarra, A.7
  • 9
    • 0034233174 scopus 로고    scopus 로고
    • Indian Ocean SST and Indian summer rainfall: Predictive relationships and their decadal variability
    • Clark, C. O., J. E. Cole, and P. J. Webster (2000), Indian Ocean SST and Indian summer rainfall: Predictive relationships and their decadal variability, J. Climate13, 2503-2519, DOI: 10. 1175/1520-0442(2000)013〈2503: IOSAIS〉2. 0. CO; 2.
    • (2000) J. Climate , vol.13 , pp. 2503-2519
    • Clark, C.O.1    Cole, J.E.2    Webster, P.J.3
  • 10
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W., and R. L. Wilby (2001), Hydrological modelling using artificial neural networks, Prog. Phys. Geog. 25, 1, 80-108, DOI: 10. 1177/030913330102500104.
    • (2001) Prog. Phys. Geog. , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 11
    • 33750497227 scopus 로고    scopus 로고
    • Simulation of Indian summer monsoon: experiments with SSTs
    • Deb, S. K., H. C. Upadhyaya, O. P. Sharma, and A. Chakraborty (2006), Simulation of Indian summer monsoon: experiments with SSTs, Meteorol. Atmos. Phys. 94, 43-64, DOI: 10. 1007/s00703-005-0171-6.
    • (2006) Meteorol. Atmos. Phys. , vol.94 , pp. 43-64
    • Deb, S.K.1    Upadhyaya, H.C.2    Sharma, O.P.3    Chakraborty, A.4
  • 12
    • 0344286516 scopus 로고    scopus 로고
    • Real time wave forecasting using neural networks
    • Deo, M. C., and C. S. Naidu (1998), Real time wave forecasting using neural networks, Ocean Eng. 26, 191-203, DOI: 10. 1016/S0029-8018(97)10025-7.
    • (1998) Ocean Eng. , vol.26 , pp. 191-203
    • Deo, M.C.1    Naidu, C.S.2
  • 13
    • 0020389158 scopus 로고
    • Studies of the indian summer monsoon with a coarse-mesh general circulation model, Part 2
    • Druyan, L. M. (1982), Studies of the indian summer monsoon with a coarse-mesh general circulation model, Part 2, J. Climatol. 2, 4, 347-355, DOI: 10. 1002/joc. 3370020405.
    • (1982) J. Climatol. , vol.2 , Issue.4 , pp. 347-355
    • Druyan, L.M.1
  • 14
    • 0009713430 scopus 로고    scopus 로고
    • Comparing classical and neural regression techniques in modeling crude oil viscosity
    • Elsharkwy, A. M., and R. B. C. Gharbi (2000), Comparing classical and neural regression techniques in modeling crude oil viscosity, Adv. Eng. Softw. 32, 215-224, DOI: 10. 1016/S0965-9978(00)00083-1.
    • (2000) Adv. Eng. Softw. , vol.32 , pp. 215-224
    • Elsharkwy, A.M.1    Gharbi, R.B.C.2
  • 15
    • 0002313891 scopus 로고
    • Multicollinearity in regression analysis: The problem revisited
    • Farrar, D. E., and R. R. Glauber (1967), Multicollinearity in regression analysis: The problem revisited, Rev. Econ. Statistics49, 92-107, DOI: 10. 2307/1937887.
    • (1967) Rev. Econ. Statistics , vol.49 , pp. 92-107
    • Farrar, D.E.1    Glauber, R.R.2
  • 17
    • 0043007726 scopus 로고    scopus 로고
    • The Indian monsoon and its variability
    • Gadgil, S. (2003), The Indian monsoon and its variability, Annu. Rev. Earth Planet. Sc. 31, 429-467, DOI: 10. 1146/annurev. earth. 31. 100901. 141251.
    • (2003) Annu. Rev. Earth Planet. Sc. , vol.31 , pp. 429-467
    • Gadgil, S.1
  • 18
    • 27744593245 scopus 로고    scopus 로고
    • Monsoon prediction-why yet another failure?
    • Gadgil, S., M. Rajeevan, and R. Nanjundiah (2005), Monsoon prediction-why yet another failure?, Curr. Sci. India88, 1389-1400.
    • (2005) Curr. Sci. India , vol.88 , pp. 1389-1400
    • Gadgil, S.1    Rajeevan, M.2    Nanjundiah, R.3
  • 19
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences
    • Gardner, M. W., and S. R. Dorling (1998) Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences, Atmos. Environ. 32, 14-15, 2627-2636, DOI: 10. 1016/S1352-2310(97)00447-0.
    • (1998) Atmos. Environ. , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 20
    • 0033081112 scopus 로고    scopus 로고
    • 2 concentrations in urban air in London
    • 2 concentrations in urban air in London, Atmos. Environ. 33, 5, 709-719, DOI: 10. 1016/S1352-2310(98)00230-1.
    • (1999) Atmos. Environ. , vol.33 , Issue.5 , pp. 709-719
    • Gardner, M.W.1    Dorling, S.R.2
  • 21
    • 0029223565 scopus 로고
    • Back-propagation neural networks for modeling complex systems
    • Goh, A. T. C. (1995), Back-propagation neural networks for modeling complex systems, Artif. Intell. Eng. 9, 143-151, DOI: 10. 1016/0954-1810(94)00011-S.
    • (1995) Artif. Intell. Eng. , vol.9 , pp. 143-151
    • Goh, A.T.C.1
  • 22
    • 0033475493 scopus 로고    scopus 로고
    • Long range forecasting Indian summer monsoon rainfall by a hybrid principal component neural network model
    • Guhathakurta, P., M. Rajeevan, and V. Thapliyal (1999), Long range forecasting Indian summer monsoon rainfall by a hybrid principal component neural network model, Meteorol. Atmos. Phys. 71, 3-4, 255-266, DOI: 10. 1007/s007030050059.
    • (1999) Meteorol. Atmos. Phys. , vol.71 , Issue.3-4 , pp. 255-266
    • Guhathakurta, P.1    Rajeevan, M.2    Thapliyal, V.3
  • 24
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik, K. (1991), Approximation capabilities of multilayer feedforward networks. Neural Networks4, 251-257, DOI: 10. 1016/0893-6080(91)90009-T.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 25
    • 0032466364 scopus 로고    scopus 로고
    • Applying neural network models to prediction and data analysis in meteorology and oceanography
    • Hsieh, W. W., and T. Tang (1998), Applying neural network models to prediction and data analysis in meteorology and oceanography, Bull. Amer. Meteor. Soc. 79, 1855-1869, DOI: 10. 1175/1520-0477(1998)079〈1855: ANNMTP〉2. 0. CO; 2.
    • (1998) Bull. Amer. Meteor. Soc. , vol.79 , pp. 1855-1869
    • Hsieh, W.W.1    Tang, T.2
  • 26
    • 0032830354 scopus 로고    scopus 로고
    • Accelerating neural network training using weight extrapolation
    • Kamarthi, S. V., and S. Pittner (1999), Accelerating neural network training using weight extrapolation, Neural Networks12, 1285-1299, DOI: 10. 1016/S0893-6080(99)00072-6.
    • (1999) Neural Networks , vol.12 , pp. 1285-1299
    • Kamarthi, S.V.1    Pittner, S.2
  • 27
    • 2442587552 scopus 로고    scopus 로고
    • Alternative cropping strategies for assured and efficient crop production in upland rain fed rice areas of eastern India based on rainfall analysis
    • Kar, G., R. Singh, and H. N. Verma (2004), Alternative cropping strategies for assured and efficient crop production in upland rain fed rice areas of eastern India based on rainfall analysis, Agr. Water Manage. 67, 47-62, DOI: 10. 1016/j. agwat. 2003. 12. 005.
    • (2004) Agr. Water Manage. , vol.67 , pp. 47-62
    • Kar, G.1    Singh, R.2    Verma, H.N.3
  • 28
    • 84862699807 scopus 로고    scopus 로고
    • Skill of monthly rainfall forecasts over India using multi-model ensemble schemes
    • DOI: 10. 1002/joc. 2334 (in print)
    • Kar, S. C., N. Acharya, U. C. Mohanty, and M. A. Kulkarni (2011), Skill of monthly rainfall forecasts over India using multi-model ensemble schemes, Int. J. Climatol., DOI: 10. 1002/joc. 2334 (in print).
    • (2011) Int. J. Climatol.
    • Kar, S.C.1    Acharya, N.2    Mohanty, U.C.3    Kulkarni, M.A.4
  • 29
    • 33646572227 scopus 로고    scopus 로고
    • Chaotic time series prediction with a global model: Artificial neural network
    • Karunasinghe, D. S. K., and S.-Y. Liong (2006), Chaotic time series prediction with a global model: Artificial neural network, J. Hydrol. 323, 92-105, DOI: 10. 1016/j. jhydrol. 2005. 07. 048.
    • (2006) J. Hydrol. , vol.323 , pp. 92-105
    • Karunasinghe, D.S.K.1    Liong, S.-Y.2
  • 30
    • 0041419400 scopus 로고    scopus 로고
    • Sir Gilbert Walker and a connection between El Nino and statistics
    • Katz, R. W. (2002), Sir Gilbert Walker and a connection between El Nino and statistics, Stat. Sci. 17, 97-117, DOI: 10. 1214/ss/1023799000.
    • (2002) Stat. Sci. , vol.17 , pp. 97-117
    • Katz, R.W.1
  • 31
    • 0034144249 scopus 로고    scopus 로고
    • Indian monsoon - ENSO relationship on interdecadal timescale
    • Krishnamurthy, V., and B. N. Goswami (2000), Indian monsoon - ENSO relationship on interdecadal timescale, J. Climate13, 579-595, DOI: 10. 1175/1520-0442(2000)013〈0579: IMEROI〉2. 0. CO; 2.
    • (2000) J. Climate , vol.13 , pp. 579-595
    • Krishnamurthy, V.1    Goswami, B.N.2
  • 32
    • 70350004103 scopus 로고    scopus 로고
    • Relation between Indian monsoon variability and SST
    • Krishnamurthy, V., and B. P. Kirtman (2009), Relation between Indian monsoon variability and SST, J. Climate22, 17, 4437-4458, DOI: 10. 1175/2009JCLI2520. 1.
    • (2009) J. Climate , vol.22 , Issue.17 , pp. 4437-4458
    • Krishnamurthy, V.1    Kirtman, B.P.2
  • 33
    • 0001131866 scopus 로고
    • Tropical east-west circulations during the northern summer
    • Krishnamurti, T. N. (1971), Tropical east-west circulations during the northern summer, J. Atmos. Sci. 28, 8, 1342-1347, DOI: 10. 1175/1520-0469(1971) 028〈1342: TEWCDT〉2. 0. CO; 2.
    • (1971) J. Atmos. Sci. , vol.28 , Issue.8 , pp. 1342-1347
    • Krishnamurti, T.N.1
  • 34
    • 0017007228 scopus 로고
    • Oscillations of a monsoon system. Part I: Observational aspects
    • Krishnamurti, T., and H. Bhalme (1976), Oscillations of a monsoon system. Part I: Observational aspects, J. Atmos. Sci. 33, 1937-1954, DOI: 10. 1175/1520-0469(1976)033〈1937: OOAMSP〉2. 0. CO; 2.
    • (1976) J. Atmos. Sci. , vol.33 , pp. 1937-1954
    • Krishnamurti, T.1    Bhalme, H.2
  • 36
    • 22944469095 scopus 로고    scopus 로고
    • Advancing dynamical prediction of Indian monsoon rainfall
    • Kumar, K. K., M. Hoerling, and B. Rajagopalan (2005), Advancing dynamical prediction of Indian monsoon rainfall, Geophys. Res. Lett. 32, L08704, DOI: 10. 1029/2004GL021979.
    • (2005) Geophys. Res. Lett. , vol.32
    • Kumar, K.K.1    Hoerling, M.2    Rajagopalan, B.3
  • 37
    • 0032730109 scopus 로고    scopus 로고
    • Artificial neural networks applied to survival prediction in breast cancer
    • Lundin, M., J. Lundin, H. B. Burke, S. Toikkanen, L. Pylkkänen, and H. Joensuu (1999), Artificial neural networks applied to survival prediction in breast cancer, Oncology57, 281-286, DOI: 10. 1159/000012061.
    • (1999) Oncology , vol.57 , pp. 281-286
    • Lundin, M.1    Lundin, J.2    Burke, H.B.3    Toikkanen, S.4    Pylkkänen, L.5    Joensuu, H.6
  • 38
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier, H. R., and G. C. Dandy (2000), Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environ. Modell. Softw. 15, 101-124, DOI: 10. 1016/S1364-8152(99)00007-9.
    • (2000) Environ. Modell. Softw. , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 39
    • 82655176375 scopus 로고    scopus 로고
    • Monsoon weather variation and its impact on agriculture
    • Mishra, S. (2006), Monsoon weather variation and its impact on agriculture, West Bengal48, 9, 21-31.
    • (2006) West Bengal , vol.48 , Issue.9 , pp. 21-31
    • Mishra, S.1
  • 40
    • 15044359635 scopus 로고    scopus 로고
    • Some characteristics of low pressure systems and summer monsoon rainfall over Orissa
    • Mohapatra, M., and U. C. Mohanty (2004), Some characteristics of low pressure systems and summer monsoon rainfall over Orissa, Curr. Sci. India87, 9, 1245-1255.
    • (2004) Curr. Sci. India , vol.87 , Issue.9 , pp. 1245-1255
    • Mohapatra, M.1    Mohanty, U.C.2
  • 41
    • 34548329971 scopus 로고    scopus 로고
    • An objective approach for prediction of daily summer monsoon rainfall over Orissa (India) due to interaction of mesoscale and large-scale synoptic systems
    • Mohapatra, M., and U. C. Mohanty (2007), An objective approach for prediction of daily summer monsoon rainfall over Orissa (India) due to interaction of mesoscale and large-scale synoptic systems, Pure Appl. Geophys. 164, 1683-1698, DOI: 10. 1007/978-3-7643-8493-7_13.
    • (2007) Pure Appl. Geophys. , vol.164 , pp. 1683-1698
    • Mohapatra, M.1    Mohanty, U.C.2
  • 42
    • 27844608945 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
    • Nagendra, S. M., and M. Khare (2006), Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions, Ecol. Model. 190, 99-115, DOI: 10. 1016/j. ecolmodel. 2005. 01. 062.
    • (2006) Ecol. Model. , vol.190 , pp. 99-115
    • Nagendra, S.M.1    Khare, M.2
  • 43
    • 0028584611 scopus 로고
    • Predicting Indian monsoon rainfall: a neural network approach
    • Navone, H. D., and H. A. Ceccatto (1994), Predicting Indian monsoon rainfall: a neural network approach, Clim. Dynam. 10, 6-7, 305-312, DOI: 10. 1007/BF00228029.
    • (1994) Clim. Dynam. , vol.10 , Issue.6-7 , pp. 305-312
    • Navone, H.D.1    Ceccatto, H.A.2
  • 44
    • 1942490118 scopus 로고    scopus 로고
    • A neurofuzzy computing technique for modeling hydrological time series
    • Nayak, P. C., K. P. Sudheer, D. M. Rangan, and K. S. Ramasastri (2004), A neurofuzzy computing technique for modeling hydrological time series, J. Hydrol. 291, 52-66, DOI: 10. 1016/j. jhydrol. 2003. 12. 010.
    • (2004) J. Hydrol. , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 45
    • 0036709435 scopus 로고    scopus 로고
    • An enhanced neural network technique for software risk analysis
    • Neumann, D. E. (2002), An enhanced neural network technique for software risk analysis, IEEE Trans. Software Eng. 28, 9, 904-912, DOI: 10. 1109/TSE. 2002. 1033229.
    • (2002) IEEE Trans. Software Eng. , vol.28 , Issue.9 , pp. 904-912
    • Neumann, D.E.1
  • 46
    • 77951667468 scopus 로고    scopus 로고
    • Prediction of summer monsoon rainfall over India using the NCEP climate forecast system
    • Pattanaik, D. R., and A. Kumar (2010), Prediction of summer monsoon rainfall over India using the NCEP climate forecast system, Clim. Dynam. 34, 557-572, DOI: 10. 1007/s00382-009-0648-y.
    • (2010) Clim. Dynam. , vol.34 , pp. 557-572
    • Pattanaik, D.R.1    Kumar, A.2
  • 47
    • 0037368970 scopus 로고    scopus 로고
    • A neural network tool for analyzing trends in rainfall
    • Philip, N. S., and K. B. Joseph (2003), A neural network tool for analyzing trends in rainfall, Comput. Geosci. 29, 2, 215-223, DOI: 10. 1016/S0098-3004(02) 00117-6.
    • (2003) Comput. Geosci. , vol.2-29 , pp. 215-2223
    • Philip, N.S.1    Joseph, K.B.2
  • 48
    • 77956484678 scopus 로고    scopus 로고
    • A logistic regression approach for monthly rainfall forecasts in meteorological subdivisions of India based on DEMETER retrospective forecasts
    • Prasad, K., S. K. Dash, and U. C. Mohanty (2009), A logistic regression approach for monthly rainfall forecasts in meteorological subdivisions of India based on DEMETER retrospective forecasts, Int. J. Climatol. 30, 10, 1577-1588, DOI: 10. 1002/joc. 2019.
    • (2009) Int. J. Climatol. , vol.30 , Issue.10 , pp. 1577-1588
    • Prasad, K.1    Dash, S.K.2    Mohanty, U.C.3
  • 49
    • 0034385678 scopus 로고    scopus 로고
    • New models for long range forecasts of summer monsoon rainfall over north west and peninsular India
    • Rajeevan, M., P. Guhathakurta, and V. Thapliyal (2000), New models for long range forecasts of summer monsoon rainfall over north west and peninsular India, Meteorol. Atmos. Phys. 73, 211-225, DOI: 10. 1007/s007030050074.
    • (2000) Meteorol. Atmos. Phys. , vol.73 , pp. 211-225
    • Rajeevan, M.1    Guhathakurta, P.2    Thapliyal, V.3
  • 50
    • 33747833684 scopus 로고    scopus 로고
    • High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells
    • Rajeevan, M., J. Bhate, J. Kale, and B. Lal (2006), High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells, Curr. Sci. India91, 296-306.
    • (2006) Curr. Sci. India , vol.91 , pp. 296-306
    • Rajeevan, M.1    Bhate, J.2    Kale, J.3    Lal, B.4
  • 51
    • 0032820154 scopus 로고    scopus 로고
    • Characteristics of medium range rainfall forecasts of the Asian summer monsoon
    • Ramesh, K. J., and G. R. Iyengar (1999), Characteristics of medium range rainfall forecasts of the Asian summer monsoon, Int. J. Climatol. 19, 62-637, DOI: 10. 1002/(SICI)1097-0088(199905)19: 6〈627:: AID-JOC374〉3. 0. CO; 2-I.
    • (1999) Int. J. Climatol. , vol.19 , pp. 62-637
    • Ramesh, K.J.1    Iyengar, G.R.2
  • 52
    • 0024189878 scopus 로고
    • Interannual variations of SST over the Arabian Sea and the Indian monsoon: A new perspective
    • Rao, K. G., and B. N. Goswami (1988), Interannual variations of SST over the Arabian Sea and the Indian monsoon: A new perspective, Monthly Weath. Rev. 116, 3, 558-568, DOI: 10. 1175/1520-0493(1988)116〈0558: IVOSST〉 2. 0. CO; 2.
    • (1988) Monthly Weath. Rev. , vol.116 , Issue.3 , pp. 558-568
    • Rao, K.G.1    Goswami, B.N.2
  • 53
    • 0028581380 scopus 로고
    • Improved global sea surface temperature analyses
    • Reynolds, R. W., and T. M. Smith (1994), Improved global sea surface temperature analyses, J. Climate7, 929-948, DOI: 10. 1175/1520-0442(1994)007〈0929: IGSSTA〉2. 0. CO; 2.
    • (1994) J. Climate , vol.7 , pp. 929-948
    • Reynolds, R.W.1    Smith, T.M.2
  • 54
    • 0034105661 scopus 로고    scopus 로고
    • All India summer monsoon rainfall prediction using artificial neural network
    • Sahai, A. K., M. K. Soman, and V. Satyan (2000), All India summer monsoon rainfall prediction using artificial neural network, Clim. Dynam. 16, 291-302, DOI: 10. 1007/s003820050328.
    • (2000) Clim. Dynam. , vol.16 , pp. 291-302
    • Sahai, A.K.1    Soman, M.K.2    Satyan, V.3
  • 55
    • 0037929576 scopus 로고    scopus 로고
    • Long-lead prediction of Indian summer monsoon rainfall from global SST evolution
    • Sahai, A. K., A. M. Grimm, V. Satyan, and G. B. Pant (2003), Long-lead prediction of Indian summer monsoon rainfall from global SST evolution, Clim. Dynam. 20, 855-863, DOI: 10. 1007/s00382-003-0306-8.
    • (2003) Clim. Dynam. , vol.20 , pp. 855-863
    • Sahai, A.K.1    Grimm, A.M.2    Satyan, V.3    Pant, G.B.4
  • 56
    • 0032561498 scopus 로고    scopus 로고
    • Predictability in the midst of chaos: A scientific basis for climate forecasting
    • Shukla, J. (1998), Predictability in the midst of chaos: A scientific basis for climate forecasting, Science282, 728-731, DOI: 10. 1126/science. 282. 5389. 728.
    • (1998) Science , vol.282 , pp. 728-731
    • Shukla, J.1
  • 57
    • 0034737012 scopus 로고    scopus 로고
    • Chaos theory in hydrology: important issues and interpretations
    • Sivakumar, B. (2000) Chaos theory in hydrology: important issues and interpretations, J. Hydrol. 227, 1-20, DOI: 10. 1016/S0022-1694(99)00186-9.
    • (2000) J. Hydrol. , vol.227 , pp. 1-20
    • Sivakumar, B.1
  • 58
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K. P., A. K. Gosain, and K. S. Ramasastri (2002), A data-driven algorithm for constructing artificial neural network rainfall-runoff models, Hydrol. Process. 16, 1325-1330, DOI: 10. 1002/hyp. 554.
    • (2002) Hydrol. Process. , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 60
    • 0002821764 scopus 로고
    • Artificial neural network models for forecasting and decision making
    • Tim, H., L. Marquez, M. O'Connor, and R. William (1994), Artificial neural network models for forecasting and decision making, Int. J. Forecasing10, 5-15, DOI: 10. 1016/0169-2070(94)90045-0.
    • (1994) Int. J. Forecasing , vol.10 , pp. 5-15
    • Tim, H.1    Marquez, L.2    O'Connor, M.3    William, R.4
  • 61
    • 33646400023 scopus 로고    scopus 로고
    • Neural regression model, resampling and diagnosis
    • Tsujitani, M., and M. Aoki (2006), Neural regression model, resampling and diagnosis, Syst. Comput. Jpn. 37, 13-20, DOI: 10. 1002/scj. v37: 6.
    • (2006) Syst. Comput. Jpn. , vol.37 , pp. 13-20
    • Tsujitani, M.1    Aoki, M.2
  • 62
    • 21344462148 scopus 로고    scopus 로고
    • Power-law correlations in column ozone over Antarctica
    • Varotsos, C. (2005a), Power-law correlations in column ozone over Antarctica, Int. J. Remote Sens. 26, 3333-3342, DOI: 10. 1080/01431160500076111.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 3333-3342
    • Varotsos, C.1
  • 63
    • 25144504295 scopus 로고    scopus 로고
    • Modern computational techniques for environmental data: Application to the global ozone layer
    • Lecture Notes in Computer Science, V. S. Sunderam, G. D. Albadavan, P. M. A. Sloot, and J. Dongarra (Eds.), Berlin: Springer
    • Varotsos, C. (2005b), Modern computational techniques for environmental data: Application to the global ozone layer. In: V. S. Sunderam, G. D. van Albada, P. M. A. Sloot and J. Dongarra (eds.), Computational Science - ICCS 2005, Proc. 5th International Conference, Atlanta, GA, USA, 22-25 May 2005, Part III, Lecture Notes in Computer Science 3516, Springer, Berlin, 504-510, DOI: 10. 1007/11428862_69.
    • (2005) Computational Science - ICCS 2005, Proc. 5th International Conference, Atlanta, GA, USA, 22-25 May 2005, Part III , vol.3516 , pp. 504-510
    • Varotsos, C.1
  • 64
    • 33748692217 scopus 로고    scopus 로고
    • Long-memory processes in ozone and temperature variations at the region 60°S-60°N
    • Varotsos, C., and D. Kirk-Davidoff (2006), Long-memory processes in ozone and temperature variations at the region 60°S-60°N, Atmos. Chem. Phys. 6, 12, 4093-4100, DOI: 10. 5194/acp-6-4093-2006.
    • (2006) Atmos. Chem. Phys. , vol.6 , Issue.12 , pp. 4093-4100
    • Varotsos, C.1    Kirk-Davidoff, D.2
  • 65
    • 84963654366 scopus 로고    scopus 로고
    • Interannual Indian rainfall variability and Indian Ocean sea surface temperature anomalies
    • Geophysical Monograph, C. Wang, S.-P. Xie, and J. A. Carton (Eds.), Washington D.C.: American Geophysical Union
    • Vecchi, G. A., and D. E. Harrison (2004), Interannual Indian rainfall variability and Indian Ocean sea surface temperature anomalies. In: C. Wang, S.-P. Xie and J. A. Carton (eds.), Earth Climate: The Ocean-Atmosphere Interaction, Geophysical Monograph 147, American Geophysical Union, Washington D. C., 247-260.
    • (2004) Earth Climate: The Ocean-Atmosphere Interaction , vol.147 , pp. 247-260
    • Vecchi, G.A.1    Harrison, D.E.2
  • 66
    • 0031504678 scopus 로고    scopus 로고
    • Prediction of all India summer monsoon rainfall using error-backpropagation neural networks
    • Venkatesan, C., S. D. Raskar, S. S. Tambe, B. D. Kulkarni, and R. N. Keshavamurty (1997), Prediction of all India summer monsoon rainfall using error-backpropagation neural networks, Meteorol. Atmos. Phys. 62, 225-240, DOI: 10. 1007/BF01029704.
    • (1997) Meteorol. Atmos. Phys. , vol.62 , pp. 225-240
    • Venkatesan, C.1    Raskar, S.D.2    Tambe, S.S.3    Kulkarni, B.D.4    Keshavamurty, R.N.5
  • 67
    • 25844494164 scopus 로고    scopus 로고
    • fundamental challenge in simulation and prediction of summer monsoon rainfall
    • Wang, B., Q. Ding, X. Fu, I. S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes (2005), fundamental challenge in simulation and prediction of summer monsoon rainfall, Geophys. Res. Lett. 32, L15711, DOI: 10. 1029/2005GL022734.
    • (2005) Geophys. Res. Lett. , vol.32
    • Wang, B.1    Ding, Q.2    Fu, X.3    Kang, I.S.4    Jin, K.5    Shukla, J.6    Doblas-Reyes, F.7
  • 68
    • 0009149512 scopus 로고
    • Effects of a variety of Indian Ocean surface temperature anomaly patterns on the summer monsoon circulation: Experiments with the NCAR general circulation model
    • Washington, W. M., R. M. Chervin, and G. V. Rao (1977), Effects of a variety of Indian Ocean surface temperature anomaly patterns on the summer monsoon circulation: Experiments with the NCAR general circulation model. Pure Appl. Geophys. 115, 1335-1356, DOI: 10. 1007/BF00874412.
    • (1977) Pure Appl. Geophys. , vol.115 , pp. 1335-1356
    • Washington, W.M.1    Chervin, R.M.2    Rao, G.V.3
  • 70
    • 0027789617 scopus 로고
    • Chaos theory and its applications to the atmosphere
    • Zeng, X., R. A. Pielke, and R. Eykholt (1993), Chaos theory and its applications to the atmosphere, Bull. Amer. Meteor. Soc. 74, 631-644, DOI: 10. 1175/1520-0477(1993)074〈0631: CTAIAT〉2. 0. CO; 2.
    • (1993) Bull. Amer. Meteor. Soc. , vol.74 , pp. 631-644
    • Zeng, X.1    Pielke, R.A.2    Eykholt, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.