메뉴 건너뛰기




Volumn 41, Issue 11, 2011, Pages 1041-1050

Discovering the transcriptional modules using microarray data by penalized matrix decomposition

Author keywords

Clustering; Gene expression data; Penalized matrix decomposition; Transcriptional module

Indexed keywords

BIOLOGICAL NETWORKS; CELLULAR ACTIVITIES; CLUSTER GENES; CLUSTERING; CLUSTERING RESULTS; DATA SETS; EXPRESSION PROFILE; GENE EXPRESSION DATA; MATRIX DECOMPOSITION; META-GENES; MICROARRAY DATA; PENALIZED MATRIX DECOMPOSITION; REGULATORY MECHANISM; SPARSITY CONSTRAINTS; TRANSCRIPTIONAL MODULE; TRANSCRIPTIONAL MODULES;

EID: 82655173784     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2011.09.003     Document Type: Article
Times cited : (8)

References (26)
  • 1
    • 6944244084 scopus 로고    scopus 로고
    • A module map showing conditional activity of expression modules in cancer
    • Segal E., et al. A module map showing conditional activity of expression modules in cancer. Nat. Genet. 2004, 36:1090-1098.
    • (2004) Nat. Genet. , vol.36 , pp. 1090-1098
    • Segal, E.1
  • 2
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen M.B., et al. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95:14863-14868.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 14863-14868
    • Eisen, M.B.1
  • 3
    • 67649403094 scopus 로고    scopus 로고
    • Towards improving fuzzy clustering using support vector machine: application to gene expression data
    • Mukhopadhyay A., Maulik U. Towards improving fuzzy clustering using support vector machine: application to gene expression data. Pattern Recognition 2009, 42(11):2744-2763.
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2744-2763
    • Mukhopadhyay, A.1    Maulik, U.2
  • 5
    • 35348822688 scopus 로고    scopus 로고
    • Improving cluster visualization in self-organizing maps: application in gene expression data analysis
    • Fernandez E.A., Balzarini M. Improving cluster visualization in self-organizing maps: application in gene expression data analysis. Comput. Biol. Med. 2007, 37(12):1677-1689.
    • (2007) Comput. Biol. Med. , vol.37 , Issue.12 , pp. 1677-1689
    • Fernandez, E.A.1    Balzarini, M.2
  • 6
    • 1542473171 scopus 로고    scopus 로고
    • Application of independent component analysis to microarray
    • Lee S.I., Batzoglou S. Application of independent component analysis to microarray. Genome Biol. 2003, 4:R76.
    • (2003) Genome Biol. , vol.4
    • Lee, S.I.1    Batzoglou, S.2
  • 7
    • 29144442380 scopus 로고    scopus 로고
    • Multi-way clustering of microarray data using probabilistic sparse matrix factorization
    • Dueck D., Morris Q.D., Frey B.J. Multi-way clustering of microarray data using probabilistic sparse matrix factorization. Bioinformatics 2005, 21(1):i144-i151.
    • (2005) Bioinformatics , vol.21 , Issue.1
    • Dueck, D.1    Morris, Q.D.2    Frey, B.J.3
  • 9
    • 20844437991 scopus 로고    scopus 로고
    • Functional annotation and network reconstruction through cross-platform integration of microarray data
    • Zhou X.J., et al. Functional annotation and network reconstruction through cross-platform integration of microarray data. Nat. Biotechnol. 2005, 23:238-243.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 238-243
    • Zhou, X.J.1
  • 10
    • 34548624811 scopus 로고    scopus 로고
    • MISEP method for post-nonlinear blind source separation
    • Zheng C.H., Huang D.S., Kang L., Irwin G., Sun Z. MISEP method for post-nonlinear blind source separation. Neural Comput. 2007, 19(9):2557-2578.
    • (2007) Neural Comput. , vol.19 , Issue.9 , pp. 2557-2578
    • Zheng, C.H.1    Huang, D.S.2    Kang, L.3    Irwin, G.4    Sun, Z.5
  • 12
    • 44349190399 scopus 로고    scopus 로고
    • Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data
    • Chang C., Ding Z., Hung Y.S., Fung P. Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data. Bioinformatics 2008, 24(11):1349-1358.
    • (2008) Bioinformatics , vol.24 , Issue.11 , pp. 1349-1358
    • Chang, C.1    Ding, Z.2    Hung, Y.S.3    Fung, P.4
  • 13
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • (2000)
    • Alter O., Brown P.O., Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 1999, 97:10101-10106. (2000).
    • (1999) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 14
    • 82655179356 scopus 로고    scopus 로고
    • Sparse Matrix Factorization of Gene Expression Data, MIT Artificial Intelligence Laboratory, Unpublished note
    • N. Srebro, T. Jaakkola, Sparse Matrix Factorization of Gene Expression Data, MIT Artificial Intelligence Laboratory, Unpublished note, 2001.
    • (2001)
    • Srebro, N.1    Jaakkola, T.2
  • 15
    • 33847254810 scopus 로고    scopus 로고
    • The discovery of transcriptional modules by a two-stage matrix decomposition approach
    • Li H., Sun Y., Zhan M. The discovery of transcriptional modules by a two-stage matrix decomposition approach. Bioinformatics 2007, 23(4):473-479.
    • (2007) Bioinformatics , vol.23 , Issue.4 , pp. 473-479
    • Li, H.1    Sun, Y.2    Zhan, M.3
  • 16
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten D.M., Tibshirani R., Hastie T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 2009, 10(3):515-534.
    • (2009) Biostatistics , vol.10 , Issue.3 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 17
    • 43049086717 scopus 로고    scopus 로고
    • Sparse principal component analysis via regularized low rank matrix approximation
    • Shen H., Huang J. Sparse principal component analysis via regularized low rank matrix approximation. J. Multivar. Anal. 2008, 101:1015-1034.
    • (2008) J. Multivar. Anal. , vol.101 , pp. 1015-1034
    • Shen, H.1    Huang, J.2
  • 19
    • 67749108622 scopus 로고    scopus 로고
    • Tumor clustering using non-negative matrix factorization with gene selection
    • Zheng C.H., Huang D.S., Zhang L., Kong X.Z. Tumor clustering using non-negative matrix factorization with gene selection. IEEE Trans. Inf. Technol. Biomed. 2009, 13(4):599-607.
    • (2009) IEEE Trans. Inf. Technol. Biomed. , vol.13 , Issue.4 , pp. 599-607
    • Zheng, C.H.1    Huang, D.S.2    Zhang, L.3    Kong, X.Z.4
  • 20
    • 33747865502 scopus 로고    scopus 로고
    • Independent component analysis based penalized discriminant method for tumor classification using gene expression data
    • Huang D.S., Zheng C.H. Independent component analysis based penalized discriminant method for tumor classification using gene expression data. Bioinformatics 2006, 22(15):1855-1862.
    • (2006) Bioinformatics , vol.22 , Issue.15 , pp. 1855-1862
    • Huang, D.S.1    Zheng, C.H.2
  • 22
    • 0035931072 scopus 로고    scopus 로고
    • A Compendium of gene expression in normal human tissues reveals tissue-specific genes and distinct expression patterns of housekeeping genes
    • Hsiao L., Dangond F., Yoshida T., Hong R., Jensen R.V., Misra J., Dilon W., Lee K., Clark K., Harverty P., et al. A Compendium of gene expression in normal human tissues reveals tissue-specific genes and distinct expression patterns of housekeeping genes. Physiol. Genomics 2001, 7:97-104.
    • (2001) Physiol. Genomics , vol.7 , pp. 97-104
    • Hsiao, L.1    Dangond, F.2    Yoshida, T.3    Hong, R.4    Jensen, R.V.5    Misra, J.6    Dilon, W.7    Lee, K.8    Clark, K.9    Harverty, P.10
  • 24
  • 25
    • 24644470505 scopus 로고    scopus 로고
    • Ontological analysis of gene expression data: current tools, limitations, and open problems
    • Khatri P., Draghici S. Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 2005, 21:3587-3595.
    • (2005) Bioinformatics , vol.21 , pp. 3587-3595
    • Khatri, P.1    Draghici, S.2
  • 26
    • 75549090213 scopus 로고    scopus 로고
    • KEGG for representation and analysis of molecular networks involving diseases and drugs
    • Kanehisa M., Goto S., Furumichi M., Tanabe M., Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010, 38:D355-D360.
    • (2010) Nucleic Acids Res. , vol.38
    • Kanehisa, M.1    Goto, S.2    Furumichi, M.3    Tanabe, M.4    Hirakawa, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.