메뉴 건너뛰기




Volumn 23, Issue 4, 2007, Pages 473-479

The discovery of transcriptional modules by a two-stage matrix decomposition approach

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEMENTARY DNA; FUNGAL DNA;

EID: 33847254810     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btl640     Document Type: Article
Times cited : (22)

References (34)
  • 1
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter,O. et al. (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl Acad. Sci. USA, 97, 10101-10106.
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 10101-10106
    • Alter, O.1
  • 2
    • 0038241770 scopus 로고    scopus 로고
    • Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli
    • Atkinson,M.R. et al. (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell, 113, 597-607.
    • (2003) Cell , vol.113 , pp. 597-607
    • Atkinson, M.R.1
  • 3
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet,J.P. et al. (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl Acad. Sci. USA, 101, 4164-4169.
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 4164-4169
    • Brunet, J.P.1
  • 4
    • 33645794993 scopus 로고    scopus 로고
    • Biclustering of gene expression data by non-smooth non-negative matrix factorization
    • Carmona-Saez,P. et al. (2006) Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinformatics, 7, 78.
    • (2006) BMC Bioinformatics , vol.7 , pp. 78
    • Carmona-Saez, P.1
  • 5
    • 12844264782 scopus 로고    scopus 로고
    • Blind source separation and the analysis of microarray data
    • Chiappetta,P. et al. (2004) Blind source separation and the analysis of microarray data. J. Comput. Biol., 11, 1090-1109.
    • (2004) J. Comput. Biol. , vol.11 , pp. 1090-1109
    • Chiappetta, P.1
  • 6
    • 29144442380 scopus 로고    scopus 로고
    • Multi-way clustering of microarray data using probabilistic sparse matrix factorization
    • Dueck,D. et al. (2005) Multi-way clustering of microarray data using probabilistic sparse matrix factorization. Bioinformatics, 21 (Suppl 1), i144-i151.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Dueck, D.1
  • 7
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen,M.B. et al. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA, 95, 14863-14868.
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , pp. 14863-14868
    • Eisen, M.B.1
  • 8
    • 33748201591 scopus 로고    scopus 로고
    • Independent component analysis reveals new and biologically significant structures in microarray data
    • Frigyesi,A. et al. (2006) Independent component analysis reveals new and biologically significant structures in microarray data. BMC Bioinformatics, 7, 290.
    • (2006) BMC Bioinformatics , vol.7 , pp. 290
    • Frigyesi, A.1
  • 9
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse non-negative matrix factorization
    • Gao,Y. and Church,G. (2005) Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics, 21, 3970-3975.
    • (2005) Bioinformatics , vol.21 , pp. 3970-3975
    • Gao, Y.1    Church, G.2
  • 10
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression programs in the response of yeast cells to environmental changes
    • Gasch,A.P. et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell, 11, 4241-4257.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 4241-4257
    • Gasch, A.P.1
  • 11
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • Gibbons,F.D. and Roth,F.P. (2002) Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res., 12, 1574-1581.
    • (2002) Genome Res. , vol.12 , pp. 1574-1581
    • Gibbons, F.D.1    Roth, F.P.2
  • 12
    • 33749070366 scopus 로고    scopus 로고
    • The Stanford Microarray Database: A user's guide
    • Gollub,J., Ball,C.A. and Sherlock,G. (2006) The Stanford Microarray Database: A user's guide. Methods Mol. Biol., 338, 191-208.
    • (2006) Methods Mol. Biol. , vol.338 , pp. 191-208
    • Gollub, J.1    Ball, C.A.2    Sherlock, G.3
  • 14
    • 0035852785 scopus 로고    scopus 로고
    • Dynamic modeling of gene expression data
    • Holter,N.S. et al. (2001) Dynamic modeling of gene expression data. Proc. Natl Acad. Sci. USA, 98, 1693-1698.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 1693-1698
    • Holter, N.S.1
  • 15
    • 0034628901 scopus 로고    scopus 로고
    • Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae
    • Hughes,J.D. et al. (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J. Mol. Biol., 296, 1205-1214.
    • (2000) J. Mol. Biol. , vol.296 , pp. 1205-1214
    • Hughes, J.D.1
  • 16
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Hyvarinen,A. and Oja,E. (2000) Independent component analysis: algorithms and applications. Neural Networks, 13, 411-430.
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 17
    • 0000935895 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • In Jordan,M.I. (ed.), MIT Press, Cambridge
    • Jordan,M.I., Ghahramani,Z., Jaakkola,T.S. and Saul,L.K. (1999) An introduction to variational methods for graphical models. In Jordan,M.I. (ed.), Learn. Graph. Models. MIT Press, Cambridge.
    • (1999) Learn. Graph. Models
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 18
    • 21644454696 scopus 로고    scopus 로고
    • Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures
    • Jutten,C. and Karhunen,J. (2004) Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures. Int. J. Neural. Syst., 14, 267-292.
    • (2004) Int. J. Neural. Syst. , vol.14 , pp. 267-292
    • Jutten, C.1    Karhunen, J.2
  • 19
    • 0037810449 scopus 로고    scopus 로고
    • Subsystem identification through dimensionality reduction of large-scale gene expression data
    • Kim,P.M. and Tidor,B. (2003) Subsystem identification through dimensionality reduction of large-scale gene expression data. Genome Res., 13, 1706-1718.
    • (2003) Genome Res. , vol.13 , pp. 1706-1718
    • Kim, P.M.1    Tidor, B.2
  • 20
    • 0002144623 scopus 로고    scopus 로고
    • Bayesian nonlinear independent component analysis by multi-layer perceptrons
    • In Girolami,M. (ed.), Springer-Verlag
    • Lappalainen,H. and Honkela,A. (2000) Bayesian nonlinear independent component analysis by multi-layer perceptrons. In Girolami,M. (ed.), Advances in Independent Component Analysis. Springer-Verlag, pp. 93-121.
    • (2000) Advances in Independent Component Analysis , pp. 93-121
    • Lappalainen, H.1    Honkela, A.2
  • 21
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee,D.D. and Seung,H.S. (1999) Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 22
    • 1542473171 scopus 로고    scopus 로고
    • Application of independent component analysis to microarrays
    • Lee,S.I. and Batzoglou,S. (2003) Application of independent component analysis to microarrays. Genome Biol., 4, R76.
    • (2003) Genome Biol. , vol.4
    • Lee, S.I.1    Batzoglou, S.2
  • 23
    • 0345824737 scopus 로고    scopus 로고
    • Network component analysis: Reconstruction of regulatory signals in biological systems
    • Liao,J.C. et al. (2003) Network component analysis: Reconstruction of regulatory signals in biological systems. Proc. Natl Acad. Sci. USA, 100, 15522-15527.
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 15522-15527
    • Liao, J.C.1
  • 24
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent component analysis
    • Liebermeister,W. (2002) Linear modes of gene expression determined by independent component analysis, Bioinformatics, 18, 51-60.
    • (2002) Bioinformatics , vol.18 , pp. 51-60
    • Liebermeister, W.1
  • 25
    • 0035272287 scopus 로고    scopus 로고
    • An introduction to kernel-based learning algorithms
    • Muller,K. et al. (2001) An introduction to kernel-based learning algorithms. IEEE Trans. Neural Networks, 12, 181-201.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 181-201
    • Muller, K.1
  • 27
    • 6944244084 scopus 로고    scopus 로고
    • A module map showing conditional activity of expression modules in cancer
    • Segal,E. et al. (2004) A module map showing conditional activity of expression modules in cancer. Nat. Genet., 36, 1090-1098.
    • (2004) Nat. Genet. , vol.36 , pp. 1090-1098
    • Segal, E.1
  • 28
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • Tamayo,P. et al. (1999) Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Natl Acad. Sci. USA, 96, 2907-2912.
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 2907-2912
    • Tamayo, P.1
  • 29
    • 0035112152 scopus 로고    scopus 로고
    • Nonlinear blind source separation usign a radial basis function network
    • Tan,Y. et al. (2001) Nonlinear blind source separation usign a radial basis function network, IEEE Trans Neural Networks, 12, 124-134.
    • (2001) IEEE Trans Neural Networks , vol.12 , pp. 124-134
    • Tan, Y.1
  • 30
    • 0033028596 scopus 로고    scopus 로고
    • Systematic determination of genetic network architecture
    • Tavazoie,S. et al. (1999) Systematic determination of genetic network architecture. Nat. Genet., 22, 281-285.
    • (1999) Nat. Genet. , vol.22 , pp. 281-285
    • Tavazoie, S.1
  • 31
    • 0034960264 scopus 로고    scopus 로고
    • Missing value estimation methods for DNA microarrays
    • Troyanskaya,O. et al. (2001) Missing value estimation methods for DNA microarrays. Bioinformatics, 17, 520-525.
    • (2001) Bioinformatics , vol.17 , pp. 520-525
    • Troyanskaya, O.1
  • 32
    • 33646181805 scopus 로고    scopus 로고
    • LS-NMF: A modified non-negative matrix factorization algorithm utilizing uncertainty estimates
    • Wang,G et al. (2006) LS-NMF: A modified non-negative matrix factorization algorithm utilizing uncertainty estimates, BMC Bioinformatics, 7, 175.
    • (2006) BMC Bioinformatics , vol.7 , pp. 175
    • Wang, G.1
  • 33
    • 0032549745 scopus 로고    scopus 로고
    • Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene
    • Yuh,C.H. et al. (1998) Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene. Science, 279, 1896-1902.
    • (1998) Science , vol.279 , pp. 1896-1902
    • Yuh, C.H.1
  • 34
    • 20844437991 scopus 로고    scopus 로고
    • Functional annotation and network reconstruction through cross-platform integration of microarray data
    • Zhou,X.J. et al. (2005) Functional annotation and network reconstruction through cross-platform integration of microarray data. Nat. Biotechnol., 23, 238-243.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 238-243
    • Zhou, X.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.