메뉴 건너뛰기




Volumn 5, Issue 4, 2011, Pages 342-357

Nanocomposites and bone regeneration

Author keywords

biomimetic; bone graft substitute; collagen; hydroxyapatite; nanobiomaterial; nanocomposite; nanofiber; osteogenic; segmental defect; tibia defect

Indexed keywords


EID: 82655168772     PISSN: 2095025X     EISSN: 20950268     Source Type: Journal    
DOI: 10.1007/s11706-011-0151-3     Document Type: Review
Times cited : (58)

References (117)
  • 2
  • 3
    • 13944271481 scopus 로고    scopus 로고
    • Nanophase ceramics as improved bone tissue engineering materials
    • Webster T J. Nanophase ceramics as improved bone tissue engineering materials. American Ceramic Society Bulletin, 2003, 82(6): 23-28.
    • (2003) American Ceramic Society Bulletin , vol.82 , Issue.6 , pp. 23-28
    • Webster, T.J.1
  • 5
    • 82655161456 scopus 로고    scopus 로고
    • American Academy of Orthopaedic Surgeons, New Orleans, LA, USA: AAOS 77th Annual Meeting
    • American Academy of Orthopaedic Surgeons. The Evolving Role of Bone-Graft Substitutes. AAOS 77th Annual Meeting, New Orleans, LA, USA, 2010. http://www. aatb. org/aatb/files/ccLibraryFiles/Filename/000000000322/BoneGraftSubstitutes2010. pdf.
    • (2010) The Evolving Role of Bone-Graft Substitutes
  • 6
    • 36148962660 scopus 로고    scopus 로고
    • Overview
    • C. T. Laurencin (Ed.), PA, USA: ASTM International: West Conshohocken
    • Tomford W W. Overview. In: Laurencin C T, ed. Bone Graft Substitutes. West Conshohocken, PA, USA: ASTM International, 2003.
    • (2003) Bone Graft Substitutes
    • Tomford, W.W.1
  • 13
    • 20144387650 scopus 로고    scopus 로고
    • Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy
    • Ito H, Koefoed M, Tiyapatanaputi P, et al. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nature Medicine, 2005, 11(3): 291-297.
    • (2005) Nature Medicine , vol.11 , Issue.3 , pp. 291-297
    • Ito, H.1    Koefoed, M.2    Tiyapatanaputi, P.3
  • 15
    • 0027595948 scopus 로고
    • Tissue engineering
    • Langer R, Vacanti J P. Tissue engineering. Science, 1993, 260(5110): 920-926.
    • (1993) Science , vol.260 , Issue.5110 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 16
    • 0033649024 scopus 로고    scopus 로고
    • Tissue engineering
    • Langer R. Tissue engineering. Molecular Therapy, 2000, 1(1): 12-15.
    • (2000) Molecular Therapy , vol.1 , Issue.1 , pp. 12-15
    • Langer, R.1
  • 18
    • 0033846024 scopus 로고    scopus 로고
    • Fundamentals of biomechanics in tissue engineering of bone
    • Athanasiou K A, Zhu C F, Lanctot D R, et al. Fundamentals of biomechanics in tissue engineering of bone. Tissue Engineering, 2000, 6(4): 361-381.
    • (2000) Tissue Engineering , vol.6 , Issue.4 , pp. 361-381
    • Athanasiou, K.A.1    Zhu, C.F.2    Lanctot, D.R.3
  • 19
    • 0031734171 scopus 로고    scopus 로고
    • The cell and molecular biology of fracture healing
    • Einhorn TA. The cell and molecular biology of fracture healing. Clinical Orthopaedics and Related Research, 1998, 355(Supplement): S7-S21.
    • (1998) Clinical Orthopaedics and Related Research , vol.355 , Issue.SUPPL.
    • Einhorn, T.A.1
  • 21
    • 34547585979 scopus 로고    scopus 로고
    • Biodegradable polymers as biomaterials
    • Nair L S, Laurencin C T. Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007, 32(8-9): 762-798.
    • (2007) Progress in Polymer Science , vol.32 , Issue.8-9 , pp. 762-798
    • Nair, L.S.1    Laurencin, C.T.2
  • 23
    • 77954580100 scopus 로고    scopus 로고
    • Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications
    • Deng M, Kumbar S G, Wan Y, et al. Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter, 2010, 6(14): 3119-3132.
    • (2010) Soft Matter , vol.6 , Issue.14 , pp. 3119-3132
    • Deng, M.1    Kumbar, S.G.2    Wan, Y.3
  • 24
    • 77951974299 scopus 로고    scopus 로고
    • Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering
    • Deng M, Nair L S, Nukavarapu S P, et al. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials, 2010, 31(18): 4898-4908.
    • (2010) Biomaterials , vol.31 , Issue.18 , pp. 4898-4908
    • Deng, M.1    Nair, L.S.2    Nukavarapu, S.P.3
  • 25
    • 73549124799 scopus 로고    scopus 로고
    • Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering
    • Deng M, Nair L S, Nukavarapu S P, et al. Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering. Journal of Biomedical Materials Research Part A, 2010, 92(1): 114-125.
    • (2010) Journal of Biomedical Materials Research Part A , vol.92 , Issue.1 , pp. 114-125
    • Deng, M.1    Nair, L.S.2    Nukavarapu, S.P.3
  • 26
    • 35848942818 scopus 로고    scopus 로고
    • Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene]_and poly(lactic acid-glycolic acid)
    • Deng M, Nair L S, Nukavarapu S P, et al. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene]_and poly(lactic acid-glycolic acid). Biomaterials, 2008, 29(3): 337-349.
    • (2008) Biomaterials , vol.29 , Issue.3 , pp. 337-349
    • Deng, M.1    Nair, L.S.2    Nukavarapu, S.P.3
  • 27
    • 77956897393 scopus 로고    scopus 로고
    • In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering
    • Deng M, Nair L S, Nukavarapu S P, et al. In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering. Advanced Functional Materials, 2010, 20(17): 2743-2957.
    • (2010) Advanced Functional Materials , vol.20 , Issue.17 , pp. 2743-2957
    • Deng, M.1    Nair, L.S.2    Nukavarapu, S.P.3
  • 29
    • 84974648947 scopus 로고    scopus 로고
    • Integrated bone tissue physiology: anatomy and physiology
    • S. C. Cowin (Ed.), Boca Raton, FL, USA: CRC Press LLC
    • Jee W S S. Integrated bone tissue physiology: anatomy and physiology. In: Cowin S C, ed. Bone Mechanics Handbook. Boca Raton, FL, USA: CRC Press LLC, 2001.
    • (2001) Bone Mechanics Handbook
    • Jee, W.S.S.1
  • 31
    • 27644579095 scopus 로고    scopus 로고
    • Development of nanocomposites for bone grafting
    • Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Composites Science and Technology, 2005, 65(15-16): 2385-2406.
    • (2005) Composites Science and Technology , vol.65 , Issue.15-16 , pp. 2385-2406
    • Murugan, R.1    Ramakrishna, S.2
  • 32
    • 0031638368 scopus 로고    scopus 로고
    • The material bone: structure-mechanical function relations
    • Weiner S, Wagner H D. The material bone: structure-mechanical function relations. Annual Review of Materials Science, 1998, 28(1): 271-298.
    • (1998) Annual Review of Materials Science , vol.28 , Issue.1 , pp. 271-298
    • Weiner, S.1    Wagner, H.D.2
  • 33
    • 0027244892 scopus 로고
    • A new theory of bone lamellation
    • Marotti G. A new theory of bone lamellation. Calcified Tissue International, 1993, 53(Suppl 1): S47-S56.
    • (1993) Calcified Tissue International , vol.53 , Issue.SUPPL. 1
    • Marotti, G.1
  • 35
    • 10444269418 scopus 로고    scopus 로고
    • Aspects of collagen mineralization in hard tissue formation
    • Wiesmann H P, Meyer U, Plate U, et al. Aspects of collagen mineralization in hard tissue formation. International Review of Cytology, 2004, 242: 121-156.
    • (2004) International Review of Cytology , vol.242 , pp. 121-156
    • Wiesmann, H.P.1    Meyer, U.2    Plate, U.3
  • 36
    • 0025792023 scopus 로고
    • Collagen family of proteins
    • van der Rest M, Garrone R. Collagen family of proteins. The FASEB Journal, 1991, 5(13): 2814-2823.
    • (1991) The FASEB Journal , vol.5 , Issue.13 , pp. 2814-2823
    • van der Rest, M.1    Garrone, R.2
  • 37
    • 0026529338 scopus 로고
    • Bone structure: from angstroms to microns
    • Weiner S, Traub W. Bone structure: from angstroms to microns. The FASEB Journal, 1992, 6(3): 879-885.
    • (1992) The FASEB Journal , vol.6 , Issue.3 , pp. 879-885
    • Weiner, S.1    Traub, W.2
  • 38
    • 0029164301 scopus 로고
    • The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix
    • Landis W J. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone, 1995, 16(5): 533-544.
    • (1995) Bone , vol.16 , Issue.5 , pp. 533-544
    • Landis, W.J.1
  • 39
    • 0028310940 scopus 로고
    • Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques
    • Ziv V, Weiner S. Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques. Connective Tissue Research, 1994, 30(3): 165-175.
    • (1994) Connective Tissue Research , vol.30 , Issue.3 , pp. 165-175
    • Ziv, V.1    Weiner, S.2
  • 40
    • 0029120967 scopus 로고
    • Hydroxyl groups in bone mineral
    • Rey C, Miquel J L, Facchini L, et al. Hydroxyl groups in bone mineral. Bone, 1995, 16(5): 583-586.
    • (1995) Bone , vol.16 , Issue.5 , pp. 583-586
    • Rey, C.1    Miquel, J.L.2    Facchini, L.3
  • 41
    • 0034773680 scopus 로고    scopus 로고
    • Biology of bone and how it orchestrates the form and function of the skeleton
    • Sommerfeldt D, Rubin C. Biology of bone and how it orchestrates the form and function of the skeleton. European Spine Journal, 2001, 10(Suppl 2): S86-S95.
    • (2001) European Spine Journal , vol.10 , Issue.SUPPL. 2
    • Sommerfeldt, D.1    Rubin, C.2
  • 42
    • 0033593571 scopus 로고    scopus 로고
    • Axis development and early asymmetry in mammals
    • Beddington R S, Robertson E J. Axis development and early asymmetry in mammals. Cell, 1999, 96(2): 195-209.
    • (1999) Cell , vol.96 , Issue.2 , pp. 195-209
    • Beddington, R.S.1    Robertson, E.J.2
  • 44
    • 0033955450 scopus 로고    scopus 로고
    • A role for N-cadherin in the development of the differentiated osteoblastic phenotype
    • Ferrari S L, Traianedes K, Thorne M, et al. A role for N-cadherin in the development of the differentiated osteoblastic phenotype. Journal of Bone and Mineral Research, 2000, 15(2): 198-208.
    • (2000) Journal of Bone and Mineral Research , vol.15 , Issue.2 , pp. 198-208
    • Ferrari, S.L.1    Traianedes, K.2    Thorne, M.3
  • 45
    • 0031857526 scopus 로고    scopus 로고
    • Gap junctional communication modulates gene expression in osteoblastic cells
    • Lecanda F, Towler D A, Ziambaras K, et al. Gap junctional communication modulates gene expression in osteoblastic cells. Molecular Biology of the Cell, 1998, 9(8): 2249-2258.
    • (1998) Molecular Biology of the Cell , vol.9 , Issue.8 , pp. 2249-2258
    • Lecanda, F.1    Towler, D.A.2    Ziambaras, K.3
  • 46
    • 1942449724 scopus 로고    scopus 로고
    • Polymeric scaffolds for bone tissue engineering
    • Liu X, Ma P X. Polymeric scaffolds for bone tissue engineering. Annals of Biomedical Engineering, 2004, 32(3): 477-486.
    • (2004) Annals of Biomedical Engineering , vol.32 , Issue.3 , pp. 477-486
    • Liu, X.1    Ma, P.X.2
  • 47
    • 33645125647 scopus 로고    scopus 로고
    • Osteoclast and its roles in calcium metabolism and bone development and remodeling
    • Li Z, Kong K, Qi W. Osteoclast and its roles in calcium metabolism and bone development and remodeling. Biochemical and Biophysical Research Communications, 2006, 343(2): 345-350.
    • (2006) Biochemical and Biophysical Research Communications , vol.343 , Issue.2 , pp. 345-350
    • Li, Z.1    Kong, K.2    Qi, W.3
  • 48
    • 0024461376 scopus 로고
    • Osteoclastic bone resorption by a polarized vacuolar proton pump
    • Blair H C, Teitelbaum S L, Ghiselli R, et al. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science, 1989, 245(4920): 855-857.
    • (1989) Science , vol.245 , Issue.4920 , pp. 855-857
    • Blair, H.C.1    Teitelbaum, S.L.2    Ghiselli, R.3
  • 49
    • 67449126802 scopus 로고    scopus 로고
    • From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges
    • Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. Journal of Pharmaceutical Sciences, 2009, 98(4): 1317-1375.
    • (2009) Journal of Pharmaceutical Sciences , vol.98 , Issue.4 , pp. 1317-1375
    • Baroli, B.1
  • 50
    • 0023446677 scopus 로고
    • SDS-PAGE analysis of the protein layers adsorbing in vivo and in vitro to bone substituting materials
    • Veerman E C, Suppers R J, Klein C P, et al. SDS-PAGE analysis of the protein layers adsorbing in vivo and in vitro to bone substituting materials. Biomaterials, 1987, 8(6): 442-448.
    • (1987) Biomaterials , vol.8 , Issue.6 , pp. 442-448
    • Veerman, E.C.1    Suppers, R.J.2    Klein, C.P.3
  • 51
    • 55049105551 scopus 로고
    • In vivo protein adsorption on polymers: visualization of adsorbed proteins on vascular implants in dogs
    • Nojiri C, Okano T, Koyanagi H, et al. In vivo protein adsorption on polymers: visualization of adsorbed proteins on vascular implants in dogs. Journal of Biomaterials Science, Polymer Edition, 1993, 4(2): 75-88.
    • (1993) Journal of Biomaterials Science, Polymer Edition , vol.4 , Issue.2 , pp. 75-88
    • Nojiri, C.1    Okano, T.2    Koyanagi, H.3
  • 53
    • 39049184870 scopus 로고    scopus 로고
    • Instrumentation loosening and material of implants as predisposal factors for late postoperative infections in operated idiopathic scoliosis
    • Soultanis K, Pyrovolou N, Karamitros A, et al. Instrumentation loosening and material of implants as predisposal factors for late postoperative infections in operated idiopathic scoliosis. Studies in Health Technology and Informatics, 2006, 123: 559-564.
    • (2006) Studies in Health Technology and Informatics , vol.123 , pp. 559-564
    • Soultanis, K.1    Pyrovolou, N.2    Karamitros, A.3
  • 55
    • 33746039779 scopus 로고    scopus 로고
    • The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: a 15-year perspective
    • Laurencin C T, Khan Y, Kofron M, et al. The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: a 15-year perspective. Clinical Orthopaedics and Related Research, 2006, 447: 221-236.
    • (2006) Clinical Orthopaedics and Related Research , vol.447 , pp. 221-236
    • Laurencin, C.T.1    Khan, Y.2    Kofron, M.3
  • 56
    • 2442426201 scopus 로고    scopus 로고
    • The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis
    • Sung H J, Meredith C, Johnson C, et al. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials, 2004, 25(26): 5735-5742.
    • (2004) Biomaterials , vol.25 , Issue.26 , pp. 5735-5742
    • Sung, H.J.1    Meredith, C.2    Johnson, C.3
  • 57
    • 0032007689 scopus 로고    scopus 로고
    • BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis
    • Kuboki Y, Takita H, Kobayashi D, et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. Journal of Biomedical Materials Research, 1998, 39(2): 190-199.
    • (1998) Journal of Biomedical Materials Research , vol.39 , Issue.2 , pp. 190-199
    • Kuboki, Y.1    Takita, H.2    Kobayashi, D.3
  • 59
    • 0036131596 scopus 로고    scopus 로고
    • Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition
    • Sul Y-T, Johansson C B, Petronis S, et al. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials, 2002, 23(2): 491-501.
    • (2002) Biomaterials , vol.23 , Issue.2 , pp. 491-501
    • Sul, Y.-T.1    Johansson, C.B.2    Petronis, S.3
  • 60
    • 0019447856 scopus 로고
    • Calcium phosphate ceramics as hard tissue prosthetics
    • Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clinical Orthopaedics and Related Research, 1981, 157: 259-278.
    • (1981) Clinical Orthopaedics and Related Research , vol.157 , pp. 259-278
    • Jarcho, M.1
  • 61
    • 0019568992 scopus 로고
    • In vivo surface activity of a hydroxyapatite alveolar bone substitute
    • Ducheyne P, de Groot K. In vivo surface activity of a hydroxyapatite alveolar bone substitute. Journal of Biomedical Materials Research, 1981, 15(3): 441-445.
    • (1981) Journal of Biomedical Materials Research , vol.15 , Issue.3 , pp. 441-445
    • Ducheyne, P.1    de Groot, K.2
  • 62
    • 0034084101 scopus 로고    scopus 로고
    • Enhanced functions of osteoblasts on nanophase ceramics
    • Webster T J, Ergun C, Doremus R H, et al. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000, 21(17): 1803-1810.
    • (2000) Biomaterials , vol.21 , Issue.17 , pp. 1803-1810
    • Webster, T.J.1    Ergun, C.2    Doremus, R.H.3
  • 64
    • 0026606757 scopus 로고
    • Collagen engineering for biomaterial use
    • Miyata T, Taira T, Noishiki Y. Collagen engineering for biomaterial use. Clinical Materials, 1992, 9(3-4): 139-148.
    • (1992) Clinical Materials , vol.9 , Issue.3-4 , pp. 139-148
    • Miyata, T.1    Taira, T.2    Noishiki, Y.3
  • 65
    • 0029434529 scopus 로고
    • Recent developments of collagen-based materials for medical applications and drug delivery systems
    • Rao K P. Recent developments of collagen-based materials for medical applications and drug delivery systems. Journal of Biomaterials Science, Polymer Edition, 1995, 7(7): 623-645.
    • (1995) Journal of Biomaterials Science, Polymer Edition , vol.7 , Issue.7 , pp. 623-645
    • Rao, K.P.1
  • 66
    • 0023140830 scopus 로고
    • Bone regeneration under the influence of a bone morphogenetic protein (BMP) beta tricalcium phosphate (TCP) composite in skull trephine defects in dogs
    • Urist M R, Nilsson O, Rasmussen J, et al. Bone regeneration under the influence of a bone morphogenetic protein (BMP) beta tricalcium phosphate (TCP) composite in skull trephine defects in dogs. Clinical Orthopaedics and Related Research, 1987, 214: 295-304.
    • (1987) Clinical Orthopaedics and Related Research , vol.214 , pp. 295-304
    • Urist, M.R.1    Nilsson, O.2    Rasmussen, J.3
  • 70
    • 0034988303 scopus 로고    scopus 로고
    • Bone marrow stromal stem cells: nature, biology, and potential applications
    • Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells, 2001, 19(3): 180-192.
    • (2001) Stem Cells , vol.19 , Issue.3 , pp. 180-192
    • Bianco, P.1    Riminucci, M.2    Gronthos, S.3
  • 72
    • 0345490836 scopus 로고    scopus 로고
    • Bone graft alternatives for spinal fusion
    • Grauer J N, Beiner J M, Kwon B K, et al. Bone graft alternatives for spinal fusion. BioDrugs, 2003, 17(6): 391-394.
    • (2003) BioDrugs , vol.17 , Issue.6 , pp. 391-394
    • Grauer, J.N.1    Beiner, J.M.2    Kwon, B.K.3
  • 73
    • 34250317609 scopus 로고    scopus 로고
    • Biomimetic nanocomposites for bone graft applications
    • Chan C K, Kumar T S, Liao S, et al. Biomimetic nanocomposites for bone graft applications. Nanomedicine, 2006, 1(2): 177-188.
    • (2006) Nanomedicine , vol.1 , Issue.2 , pp. 177-188
    • Chan, C.K.1    Kumar, T.S.2    Liao, S.3
  • 76
    • 0033168855 scopus 로고    scopus 로고
    • Osteoblast adhesion on nanophase ceramics
    • Webster T J, Siegel R W, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials, 1999, 20(13): 1221-1227.
    • (1999) Biomaterials , vol.20 , Issue.13 , pp. 1221-1227
    • Webster, T.J.1    Siegel, R.W.2    Bizios, R.3
  • 77
    • 0035371983 scopus 로고    scopus 로고
    • Enhanced osteoclastlike cell functions on nanophase ceramics
    • Webster T J, Ergun C, Doremus R H, et al. Enhanced osteoclastlike cell functions on nanophase ceramics. Biomaterials, 2001, 22(11): 1327-1333.
    • (2001) Biomaterials , vol.22 , Issue.11 , pp. 1327-1333
    • Webster, T.J.1    Ergun, C.2    Doremus, R.H.3
  • 78
    • 1042266511 scopus 로고    scopus 로고
    • In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide)
    • Liao S S, Cui F Z. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide). Tissue Engineering, 2004, 10(1-2): 73-80.
    • (2004) Tissue Engineering , vol.10 , Issue.1-2 , pp. 73-80
    • Liao, S.S.1    Cui, F.Z.2
  • 80
    • 0030055972 scopus 로고    scopus 로고
    • Tissue engineered bone-regeneration using degradable polymers: The formation of mineralized matrices
    • Laurencin C T, Attawia M A, Elgendy H E, et al. Tissue engineered bone-regeneration using degradable polymers: The formation of mineralized matrices. Bone, 1996, 19(1 Suppl): S93-S99.
    • (1996) Bone , vol.19 , Issue.1 SUPPL.
    • Laurencin, C.T.1    Attawia, M.A.2    Elgendy, H.E.3
  • 81
    • 53849129189 scopus 로고    scopus 로고
    • In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-coglycolide) and hydroxyapatite surface-grafted with poly(Llactide)
    • Zhang P, Hong Z, Yu T, et al. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-coglycolide) and hydroxyapatite surface-grafted with poly(Llactide). Biomaterials, 2009, 30(1): 58-70.
    • (2009) Biomaterials , vol.30 , Issue.1 , pp. 58-70
    • Zhang, P.1    Hong, Z.2    Yu, T.3
  • 82
    • 0035999785 scopus 로고    scopus 로고
    • Enhanced functions of osteoblasts on nanometer diameter carbon fibers
    • Elias K L, Price R L, Webster T J. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials, 2002, 23(15): 3279-3287.
    • (2002) Biomaterials , vol.23 , Issue.15 , pp. 3279-3287
    • Elias, K.L.1    Price, R.L.2    Webster, T.J.3
  • 83
    • 0037400814 scopus 로고    scopus 로고
    • Selective bone cell adhesion on formulations containing carbon nanofibers
    • Price R L, Waid M C, Haberstroh K M, et al. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials, 2003, 24(11): 1877-1887.
    • (2003) Biomaterials , vol.24 , Issue.11 , pp. 1877-1887
    • Price, R.L.1    Waid, M.C.2    Haberstroh, K.M.3
  • 84
    • 36849058159 scopus 로고    scopus 로고
    • Degradation and biocompatibility of a poly(propylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering
    • Mistry A S, Mikos A G, Jansen J A. Degradation and biocompatibility of a poly(propylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering. Journal of Biomedical Materials Research Part A, 2007, 83(4): 940-953.
    • (2007) Journal of Biomedical Materials Research Part A , vol.83 , Issue.4 , pp. 940-953
    • Mistry, A.S.1    Mikos, A.G.2    Jansen, J.A.3
  • 85
    • 5044234006 scopus 로고    scopus 로고
    • Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering
    • Horch R A, Shahid N, Mistry A S, et al. Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules, 2004, 5(5): 1990-1998.
    • (2004) Biomacromolecules , vol.5 , Issue.5 , pp. 1990-1998
    • Horch, R.A.1    Shahid, N.2    Mistry, A.S.3
  • 86
    • 33746310424 scopus 로고    scopus 로고
    • Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering
    • Shi X, Hudson J L, Spicer P P, et al. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules, 2006, 7(7): 2237-2242.
    • (2006) Biomacromolecules , vol.7 , Issue.7 , pp. 2237-2242
    • Shi, X.1    Hudson, J.L.2    Spicer, P.P.3
  • 87
    • 21144437402 scopus 로고    scopus 로고
    • Increased osteoblast functions on nanophase titania dispersed in poly-lactic-coglycolic acid composites
    • Liu H, Slamovich E B, Webster T J. Increased osteoblast functions on nanophase titania dispersed in poly-lactic-coglycolic acid composites. Nanotechnology, 2005, 16(7): S601-S608.
    • (2005) Nanotechnology , vol.16 , Issue.7
    • Liu, H.1    Slamovich, E.B.2    Webster, T.J.3
  • 88
    • 24044535082 scopus 로고    scopus 로고
    • Increased osteoblast function on PLGA composites containing nanophase titania
    • Webster T J, Smith T A. Increased osteoblast function on PLGA composites containing nanophase titania. Journal of Biomedical Materials Research Part A, 2005, 74(4): 677-686.
    • (2005) Journal of Biomedical Materials Research Part A , vol.74 , Issue.4 , pp. 677-686
    • Webster, T.J.1    Smith, T.A.2
  • 89
    • 0037097175 scopus 로고    scopus 로고
    • Electrospun nanofibrous structure: a novel scaffold for tissue engineering
    • Li W J, Laurencin C T, Caterson E J, et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research, 2002, 60(4): 613-621.
    • (2002) Journal of Biomedical Materials Research , vol.60 , Issue.4 , pp. 613-621
    • Li, W.J.1    Laurencin, C.T.2    Caterson, E.J.3
  • 92
    • 0346864790 scopus 로고    scopus 로고
    • Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment
    • Woo K M, Chen V J, Ma P X. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. Journal of Biomedical Materials Research Part A, 2003, 67(2): 531-537.
    • (2003) Journal of Biomedical Materials Research Part A , vol.67 , Issue.2 , pp. 531-537
    • Woo, K.M.1    Chen, V.J.2    Ma, P.X.3
  • 93
    • 33845677772 scopus 로고    scopus 로고
    • Structural and nanoindentation studies of stem cell-based tissue-engineered bone
    • Pelled G, Tai K, Sheyn D, et al. Structural and nanoindentation studies of stem cell-based tissue-engineered bone. Journal of Biomechanics, 2007, 40(2): 399-411.
    • (2007) Journal of Biomechanics , vol.40 , Issue.2 , pp. 399-411
    • Pelled, G.1    Tai, K.2    Sheyn, D.3
  • 94
    • 0141683910 scopus 로고    scopus 로고
    • A review on polymer nanofibers by electrospinning and their applications in nanocomposites
    • Huang Z-M, Zhang Y-Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003, 63(15): 2223-2253.
    • (2003) Composites Science and Technology , vol.63 , Issue.15 , pp. 2223-2253
    • Huang, Z.-M.1    Zhang, Y.-Z.2    Kotaki, M.3
  • 95
  • 96
    • 0037192505 scopus 로고    scopus 로고
    • Self-assembly at all scales
    • Whitesides G M, Grzybowski B. Self-assembly at all scales. Science, 2002, 295(5564): 2418-2421.
    • (2002) Science , vol.295 , Issue.5564 , pp. 2418-2421
    • Whitesides, G.M.1    Grzybowski, B.2
  • 97
    • 36149008114 scopus 로고
    • The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces
    • Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 1914, 3(2): 69-91.
    • (1914) Physical Review , vol.3 , Issue.2 , pp. 69-91
    • Zeleny, J.1
  • 99
    • 52649164508 scopus 로고    scopus 로고
    • Electrospun nanofiber scaffolds: engineering soft tissues
    • Kumbar S G, James R, Nukavarapu S P, et al. Electrospun nanofiber scaffolds: engineering soft tissues. Biomedical Materials, 2008, 3(3): 034002.
    • (2008) Biomedical Materials , vol.3 , Issue.3 , pp. 034002
    • Kumbar, S.G.1    James, R.2    Nukavarapu, S.P.3
  • 100
    • 0142075239 scopus 로고    scopus 로고
    • Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays
    • Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters, 2003, 3(8): 1167-1171.
    • (2003) Nano Letters , vol.3 , Issue.8 , pp. 1167-1171
    • Li, D.1    Wang, Y.2    Xia, Y.3
  • 101
    • 34547588637 scopus 로고    scopus 로고
    • Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance
    • Patel S, Kurpinski K, Quigley R, et al. Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Letters, 2007, 7(7): 2122-2128.
    • (2007) Nano Letters , vol.7 , Issue.7 , pp. 2122-2128
    • Patel, S.1    Kurpinski, K.2    Quigley, R.3
  • 102
    • 17144376020 scopus 로고    scopus 로고
    • Potential of nanofiber matrix as tissue-engineering scaffolds
    • Ma Z, Kotaki M, Inai R, et al. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Engineering, 2005, 11(1-2): 101-109.
    • (2005) Tissue Engineering , vol.11 , Issue.1-2 , pp. 101-109
    • Ma, Z.1    Kotaki, M.2    Inai, R.3
  • 105
    • 20444432818 scopus 로고    scopus 로고
    • Electrospun chitosan-based nanofibers and their cellular compatibility
    • Bhattarai N, Edmondson D, Veiseh O, et al. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 2005, 26(31): 6176-6184.
    • (2005) Biomaterials , vol.26 , Issue.31 , pp. 6176-6184
    • Bhattarai, N.1    Edmondson, D.2    Veiseh, O.3
  • 106
    • 50349091938 scopus 로고    scopus 로고
    • Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering
    • Zhang Y, Venugopal J R, El-Turki A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 2008, 29(32): 4314-4322.
    • (2008) Biomaterials , vol.29 , Issue.32 , pp. 4314-4322
    • Zhang, Y.1    Venugopal, J.R.2    El-Turki, A.3
  • 107
    • 43249130211 scopus 로고    scopus 로고
    • In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds
    • Yang D, Jin Y, Zhou Y, et al. In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds. Macromolecular Bioscience, 2008, 8(3): 239-246.
    • (2008) Macromolecular Bioscience , vol.8 , Issue.3 , pp. 239-246
    • Yang, D.1    Jin, Y.2    Zhou, Y.3
  • 108
    • 67349188044 scopus 로고    scopus 로고
    • In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects
    • Schneider O D, Weber F, Brunner T J, et al. In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Acta Biomaterialia, 2009, 5(5): 1775-1784.
    • (2009) Acta Biomaterialia , vol.5 , Issue.5 , pp. 1775-1784
    • Schneider, O.D.1    Weber, F.2    Brunner, T.J.3
  • 109
    • 33747588506 scopus 로고    scopus 로고
    • Production and potential of bioactive glass nanofibers as a next-generation biomaterial
    • Kim H-W, Kim H-E, Knowles J C. Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Advanced Functional Materials, 2006, 16(12): 1529-1535.
    • (2006) Advanced Functional Materials , vol.16 , Issue.12 , pp. 1529-1535
    • Kim, H.-W.1    Kim, H.-E.2    Knowles, J.C.3
  • 110
    • 29144520623 scopus 로고    scopus 로고
    • Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration
    • Kim H-W, Song J-H, Kim H-E. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Advanced Functional Materials, 2005, 15(12): 1988-1994.
    • (2005) Advanced Functional Materials , vol.15 , Issue.12 , pp. 1988-1994
    • Kim, H.-W.1    Song, J.-H.2    Kim, H.-E.3
  • 111
    • 9744231351 scopus 로고    scopus 로고
    • Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications
    • Nair L S, Bhattacharyya S, Bender J D, et al. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules, 2004, 5(6): 2212-2220.
    • (2004) Biomacromolecules , vol.5 , Issue.6 , pp. 2212-2220
    • Nair, L.S.1    Bhattacharyya, S.2    Bender, J.D.3
  • 112
    • 67649756045 scopus 로고    scopus 로고
    • Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: scaffolds for bone tissue engineering
    • Bhattacharyya S, Kumbar S G, Khan Y M, et al. Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: scaffolds for bone tissue engineering. Journal of Biomedical Nanotechnology, 2009, 5(1): 69-75.
    • (2009) Journal of Biomedical Nanotechnology , vol.5 , Issue.1 , pp. 69-75
    • Bhattacharyya, S.1    Kumbar, S.G.2    Khan, Y.M.3
  • 114
    • 33646582944 scopus 로고    scopus 로고
    • In vitro evaluation of poly[bis(ethyl alanato)phosphazene] as a scaffold for bone tissue engineering
    • Conconi M T, Lora S, Menti A M, et al. In vitro evaluation of poly[bis(ethyl alanato)phosphazene] as a scaffold for bone tissue engineering. Tissue Engineering, 2006, 12(4): 811-819.
    • (2006) Tissue Engineering , vol.12 , Issue.4 , pp. 811-819
    • Conconi, M.T.1    Lora, S.2    Menti, A.M.3
  • 116
    • 79960496535 scopus 로고    scopus 로고
    • Biomimetic structures: biological implications of dipeptide-substituted polyphosphazene-polyester blend nanofiber matrices for loadbearing bone regeneration
    • Deng M, Kumbar S G, Nair L S, et al. Biomimetic structures: biological implications of dipeptide-substituted polyphosphazene-polyester blend nanofiber matrices for loadbearing bone regeneration. Advanced Functional Materials, 2011, 21(14): 2641-2651.
    • (2011) Advanced Functional Materials , vol.21 , Issue.14 , pp. 2641-2651
    • Deng, M.1    Kumbar, S.G.2    Nair, L.S.3
  • 117
    • 66249146049 scopus 로고    scopus 로고
    • Complexity in biomaterials for tissue engineering
    • Place E S, Evans N D, Stevens M M. Complexity in biomaterials for tissue engineering. Nature Materials, 2009, 8(6): 457-470.
    • (2009) Nature Materials , vol.8 , Issue.6 , pp. 457-470
    • Place, E.S.1    Evans, N.D.2    Stevens, M.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.