메뉴 건너뛰기




Volumn 19, Issue 2, 2010, Pages 187-205

A comprehensive survey on functional link neural networks and an adaptive PSO-BP learning for CFLNN

Author keywords

Back propagation learning; Chebyshev functional link neural network; Classification; Functional link neural networks; Particle swarm optimization

Indexed keywords

BACKPROPAGATION LEARNING; CHANNEL EQUALIZATION; CHEBYSHEV FUNCTIONAL LINK NEURAL NETWORKS; COMPREHENSIVE PERFORMANCE; EXTENSIVE SIMULATIONS; FUNCTIONAL LINK NEURAL NETWORK; HIGHER ORDER NEURAL NETWORK; LEARNING SCHEMES;

EID: 80054727848     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-009-0288-5     Document Type: Article
Times cited : (148)

References (140)
  • 3
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • Anders U, Korn O (1999) Model selection in neural networks. Neural Netw 12:309-323
    • (1999) Neural Netw , vol.12 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 5
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • Cheng B, Titterington D (1994) Neural networks: a review from a statistical perspective. Stat Sci 9(1):2-54
    • (1994) Stat Sci , vol.9 , Issue.1 , pp. 2-54
    • Cheng, B.1    Titterington, D.2
  • 6
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 7:115-133
    • (1943) Bull Math Biophys , vol.7 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 7
    • 0023513717 scopus 로고
    • Learning invariance, and generalization in a higher order neural networks
    • Giles CL, Maxwell T (1987) Learning invariance, and generalization in a higher order neural networks. Appl Opt 26(23):4972-4978
    • (1987) Appl Opt , vol.26 , Issue.23 , pp. 4972-4978
    • Giles, C.L.1    Maxwell, T.2
  • 8
    • 0032784635 scopus 로고    scopus 로고
    • Artificial neural networks as approximators of stochastic processes
    • Belli MR, Conti M, Crippa P, Turchetti C (1999) Artificial neural networks as approximators of stochastic processes. Neural Netw 12(4-5):647-658
    • (1999) Neural Netw , vol.12 , Issue.4-5 , pp. 647-658
    • Belli, M.R.1    Conti, M.2    Crippa, P.3    Turchetti, C.4
  • 9
    • 0034233437 scopus 로고    scopus 로고
    • Neural networks with a continuous squashing function in the output are universal approximators
    • Castro JL, Mantas CJ, Benitez JM (2000) Neural networks with a continuous squashing function in the output are universal approximators. Neural Netw 13(6):561-563
    • (2000) Neural Netw , vol.13 , Issue.6 , pp. 561-563
    • Castro, J.L.1    Mantas, C.J.2    Benitez, J.M.3
  • 10
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2:183-192
    • (1989) Neural Netw , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 11
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R, Diederich J, Tickle AB (1995) Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl Based Syst 8(6):373-389
    • (1995) Knowl Based Syst , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 12
    • 0036129249 scopus 로고    scopus 로고
    • Interpretation of artificial neural networks by means of fuzzy rules
    • Castro JL, Requena I, Benitez JM (2002) Interpretation of artificial neural networks by means of fuzzy rules. IEEE Trans Neural Netw 13(1):101-116
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.1 , pp. 101-116
    • Castro, J.L.1    Requena, I.2    Benitez, J.M.3
  • 13
    • 0036565303 scopus 로고    scopus 로고
    • Extraction of rules from artificial neural networks for nonlinear regression
    • Setiono R, Leow WK, Zurada J (2002) Extraction of rules from artificial neural networks for nonlinear regression. IEEE Trans Neural Network 13(3):564-577
    • (2002) IEEE Trans Neural Network , vol.13 , Issue.3 , pp. 564-577
    • Setiono, R.1    Leow, W.K.2    Zurada, J.3
  • 14
    • 0346279920 scopus 로고    scopus 로고
    • An approach to generate rules from neural networks for regression problems
    • Setiono R, Thong JYL (2004) An approach to generate rules from neural networks for regression problems. Eur J Oper Res 155:239-250
    • (2004) Eur J Oper Res , vol.155 , pp. 239-250
    • Setiono, R.1    Thong, J.Y.L.2
  • 15
    • 0025671510 scopus 로고
    • A probabilistic approach to the understanding and training of neural network classifiers
    • Gish H (1990) A probabilistic approach to the understanding and training of neural network classifiers. In: Proc IEEE international conference acoustic, speech signal process 3:1361-1364
    • (1990) Proc IEEE international conference acoustic, speech signal process , vol.3 , pp. 1361-1364
    • Gish, H.1
  • 16
    • 0034313673 scopus 로고    scopus 로고
    • Neural networks for classification: A survey
    • Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern C 30(4):451-462
    • (2000) IEEE Trans Syst Man Cybern C , vol.30 , Issue.4 , pp. 451-462
    • Zhang, G.P.1
  • 18
    • 0000032342 scopus 로고    scopus 로고
    • How effective are neural networks at forecasting and prediction? A review and evaluation
    • Adya M, Collopy F (1998) How effective are neural networks at forecasting and prediction? A review and evaluation. J Forecast 17:481-495
    • (1998) J Forecast , vol.17 , pp. 481-495
    • Adya, M.1    Collopy, F.2
  • 19
    • 0030527298 scopus 로고    scopus 로고
    • Neural network forecasting of quarterly accounting earnings
    • Callen JL, Kwan CCY, Yip PCY, Yuan Y (1996) Neural network forecasting of quarterly accounting earnings. Int J Forecast 12:475-482
    • (1996) Int J Forecast , vol.12 , pp. 475-482
    • Callen, J.L.1    Kwan, C.C.Y.2    Yip, P.C.Y.3    Yuan, Y.4
  • 20
    • 0030170789 scopus 로고    scopus 로고
    • Forecasting comsumers' expenditure: A comparison between econometric and neural network models
    • Church KB, Curram SP (1996) Forecasting comsumers' expenditure: a comparison between econometric and neural network models. Int J Forecast 12:255-267
    • (1996) Int J Forecast , vol.12 , pp. 255-267
    • Church, K.B.1    Curram, S.P.2
  • 21
    • 0028401357 scopus 로고
    • Recurrent neural networks and robust time series prediction
    • Connor JT, Martin RD, Atlas LE (1994) Recurrent neural networks and robust time series prediction. IEEE Trans Neural Netw 51(2):240-254
    • (1994) IEEE Trans Neural Netw , vol.51 , Issue.2 , pp. 240-254
    • Connor, J.T.1    Martin, R.D.2    Atlas, L.E.3
  • 22
    • 0029409251 scopus 로고
    • Neural modeling for time series: A statistical stepwise method for weight elimination
    • Cottrell M, Girard B, Girard Y, Mangeas M, Muller C (1995) Neural modeling for time series: a statistical stepwise method for weight elimination. IEEE Trans Neural Netw 6(6):1355-1364
    • (1995) IEEE Trans Neural Netw , vol.6 , Issue.6 , pp. 1355-1364
    • Cottrell, M.1    Girard, B.2    Girard, Y.3    Mangeas, M.4    Muller, C.5
  • 23
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the airline data
    • Faraway JJ, Chatfield C (1998) Time series forecasting with neural networks: a comparative study using the airline data. Appl Stat 47:231-250
    • (1998) Appl Stat , vol.47 , pp. 231-250
    • Faraway, J.J.1    Chatfield, C.2
  • 24
    • 0000152448 scopus 로고
    • Forecasting with neural networks-an application using bankruptcy data
    • Fletcher D, Goss E (1993) Forecasting with neural networks-an application using bankruptcy data. Inf Manag 24:159-167
    • (1993) Inf Manag , vol.24 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 25
    • 0003053374 scopus 로고
    • Research prospective on neural network forecasting
    • Gorr WL (1994) Research prospective on neural network forecasting. Int J Forecast 10:1-4
    • (1994) Int J Forecast , vol.10 , pp. 1-4
    • Gorr, W.L.1
  • 26
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term forecasting: A review and evaluation
    • Hippert HS, Pedreira CE, Souza RC (2001) Neural networks for short-term forecasting: a review and evaluation. IEEE Trans Power Syst 16(1):44-55
    • (2001) IEEE Trans Power Syst , vol.16 , Issue.1 , pp. 44-55
    • Hippert, H.S.1    Pedreira, C.E.2    Souza, R.C.3
  • 27
    • 0033442924 scopus 로고    scopus 로고
    • A crossvalidation analysis of neural network out-of-sample performance in exchange rate forecasting
    • Hu MY, Zhang GP, Jiang CX, Patuwo BE (1999) A crossvalidation analysis of neural network out-of-sample performance in exchange rate forecasting. Decis Sci 30:197-216
    • (1999) Decis Sci , vol.30 , pp. 197-216
    • Hu, M.Y.1    Zhang, G.P.2    Jiang, C.X.3    Patuwo, B.E.4
  • 28
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • Kaastra I, Boyd M (1996) Designing a neural network for forecasting financial and economic time series. Neurocomputing 10:215-236
    • (1996) Neurocomputing , vol.10 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 29
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Softw 15:101-124
    • (2000) Environ Model Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 30
    • 0030109788 scopus 로고    scopus 로고
    • Predicting sun spots using a layered perceptron neural network
    • Park YR, Murray TJ, Chen C (1996) Predicting sun spots using a layered perceptron neural network. IEEE Trans Neural Netw 7(2):501-505
    • (1996) IEEE Trans Neural Netw , vol.7 , Issue.2 , pp. 501-505
    • Park, Y.R.1    Murray, T.J.2    Chen, C.3
  • 31
    • 0035427685 scopus 로고    scopus 로고
    • An investigation of model selection criteria for neural network time series forecasting
    • Qi M, Zhang GP (2001) An investigation of model selection criteria for neural network time series forecasting. Eur J Oper Res 132:666-680
    • (2001) Eur J Oper Res , vol.132 , pp. 666-680
    • Qi, M.1    Zhang, G.P.2
  • 32
    • 0001197352 scopus 로고    scopus 로고
    • Applications of artificial neural networks in management science: A survey
    • Kracha KA, Wagner U (1999) Applications of artificial neural networks in management science: a survey. J Retail Consum Serv 6:185-203
    • (1999) J Retail Consum Serv , vol.6 , pp. 185-203
    • Kracha, K.A.1    Wagner, U.2
  • 33
    • 0031125026 scopus 로고    scopus 로고
    • Neural network applications in business: A review and analysis of the literature (1988-1995)
    • Wong BK, Bodnovich TA, Selvi Y (1997) Neural network applications in business: a review and analysis of the literature (1988-1995). Decis Support Syst 19:301-320
    • (1997) Decis Support Syst , vol.19 , pp. 301-320
    • Wong, B.K.1    Bodnovich, T.A.2    Selvi, Y.3
  • 34
    • 0028416331 scopus 로고
    • Neural network in civil engineering-I: Principles and understanding
    • Flood I, Kartam N (1994) Neural network in civil engineering-I: principles and understanding. J Comput Civil Eng 8(2):131-148
    • (1994) J Comput Civil Eng , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 35
    • 0027543854 scopus 로고
    • Neural network based short term load forecasting
    • Lu CN, Wu HT, Vemuri S (1993) Neural network based short term load forecasting. IEEE Trans Power Syst 8(1):336-342
    • (1993) IEEE Trans Power Syst , vol.8 , Issue.1 , pp. 336-342
    • Lu, C.N.1    Wu, H.T.2    Vemuri, S.3
  • 36
    • 0036127092 scopus 로고    scopus 로고
    • A review of evidence of health benefit from artificial neural networks in medical intervention
    • Lisboa PJG (2002) A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw 15:11-39
    • (2002) Neural Netw , vol.15 , pp. 11-39
    • Lisboa, P.J.G.1
  • 39
    • 40649125253 scopus 로고    scopus 로고
    • Prediction of non-linear time series using higher order neural networks
    • In:, Poznan, Poland
    • Tawfik H, Liatsis P (1997) Prediction of non-linear time series using higher order neural networks. In: Proceeding IWSSIP1997 conference, Poznan, Poland
    • (1997) Proceeding IWSSIP1997 conference
    • Tawfik, H.1    Liatsis, P.2
  • 40
    • 0036604998 scopus 로고    scopus 로고
    • On a higher order neural network for distortion invariant pattern recognition
    • Kaita T, Tomita S, Yamanaka J (2002) On a higher order neural network for distortion invariant pattern recognition. Pattern Recognit Lett 23:977-984
    • (2002) Pattern Recognit Lett , vol.23 , pp. 977-984
    • Kaita, T.1    Tomita, S.2    Yamanaka, J.3
  • 41
    • 0001666851 scopus 로고
    • Efficient higher-order neural networks for classification and function approximation
    • Ghosh J, Shin Y (1992) Efficient higher-order neural networks for classification and function approximation. Int J Neural Syst 3:323-350
    • (1992) Int J Neural Syst , vol.3 , pp. 323-350
    • Ghosh, J.1    Shin, Y.2
  • 44
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madaline, and back-propagation
    • Widrow B, Lehr M (1990) 30 years of adaptive neural networks: perceptron, madaline, and back-propagation. Proc IEEE 78(9):1415-1442
    • (1990) Proc IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.2
  • 45
    • 84918441630 scopus 로고
    • Geometrical and statistical properites of systems of linear inequalities with applications in pattern recognition
    • Cover TM (1965) Geometrical and statistical properites of systems of linear inequalities with applications in pattern recognition. IEEE Trans Electron Comput 14:326-334
    • (1965) IEEE Trans Electron Comput , vol.14 , pp. 326-334
    • Cover, T.M.1
  • 46
    • 0024880831 scopus 로고
    • Multi-layer feed-forward networks are universal approximators
    • Hornik K et al (1989) Multi-layer feed-forward networks are universal approximators. Neural Netw 2:359-366
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1
  • 47
    • 0023513717 scopus 로고
    • Learning, invariance and generalization in higher-order neural networks
    • Giles CL, Maxwell T (1987) Learning, invariance and generalization in higher-order neural networks. Appl Opt 26(23):4972-4978
    • (1987) Appl Opt , vol.26 , Issue.23 , pp. 4972-4978
    • Giles, C.L.1    Maxwell, T.2
  • 49
    • 0012707131 scopus 로고
    • Programmed interactions in higher order neural networks: Maximal capacity
    • Venkatesh SS, Baldi P (1991) Programmed interactions in higher order neural networks: maximal capacity. J Complex 7:316-337
    • (1991) J Complex , vol.7 , pp. 316-337
    • Venkatesh, S.S.1    Baldi, P.2
  • 50
    • 15944408017 scopus 로고    scopus 로고
    • Modified higher order neural network for invariant pattern recognition
    • Antyomov E, Pecht OY (2005) Modified higher order neural network for invariant pattern recognition. Pattern Recognit Lett 26:843-851
    • (2005) Pattern Recognit Lett , vol.26 , pp. 843-851
    • Antyomov, E.1    Pecht, O.Y.2
  • 51
    • 58049106753 scopus 로고    scopus 로고
    • Functional link neural network for classification task in data mining
    • Misra BB, Dehuri S (2007) Functional link neural network for classification task in data mining. J Comput Sci 3(12):948-955
    • (2007) J Comput Sci , vol.3 , Issue.12 , pp. 948-955
    • Misra, B.B.1    Dehuri, S.2
  • 52
    • 40649085042 scopus 로고    scopus 로고
    • System identification using functional link neural networks with dynamic structure
    • Barcelona, Spain
    • Mirea L, Marcu T (2002) System identification using functional link neural networks with dynamic structure. 15th Triennial World Congress, Barcelona, Spain
    • (2002) 15th Triennial World Congress
    • Mirea, L.1    Marcu, T.2
  • 53
    • 0030287892 scopus 로고    scopus 로고
    • Adaptive process optimization using functional link networks and evolutionary algorithms
    • Cass R, Radl B (1996) Adaptive process optimization using functional link networks and evolutionary algorithms. Control Eng Pract 4(11):1579-1584
    • (1996) Control Eng Pract , vol.4 , Issue.11 , pp. 1579-1584
    • Cass, R.1    Radl, B.2
  • 54
    • 0029379686 scopus 로고
    • The functional link net learning optimal control
    • Pao Y-H, Philips SM (1995) The functional link net learning optimal control. Neurocomputing 9:149-164
    • (1995) Neurocomputing , vol.9 , pp. 149-164
    • Pao, Y.-H.1    Philips, S.M.2
  • 55
    • 0029304837 scopus 로고
    • Ridge polynomial networks
    • Shin Y, Ghosh J (1995) Ridge polynomial networks. IEEE Trans Neural Netw 6(2):610-622
    • (1995) IEEE Trans Neural Netw , vol.6 , Issue.2 , pp. 610-622
    • Shin, Y.1    Ghosh, J.2
  • 58
    • 0026375443 scopus 로고
    • The pi-sigma networks: An efficient higher order neural network for pattern classification and function approximation
    • Shin Y, Ghosh J (1991) The pi-sigma networks: an efficient higher order neural network for pattern classification and function approximation. In: Proceedings of international joint conference on neural networks I, pp 13-18
    • (1991) Proceedings of international joint conference on neural networks I , pp. 13-18
    • Shin, Y.1    Ghosh, J.2
  • 61
    • 0242351901 scopus 로고    scopus 로고
    • Recurrent pi-sigma networks for DPCM image coding
    • Hussain AJ, Liatsis P (2002) Recurrent pi-sigma networks for DPCM image coding. Neurocomputing 55:363-382
    • (2002) Neurocomputing , vol.55 , pp. 363-382
    • Hussain, A.J.1    Liatsis, P.2
  • 62
    • 36849072477 scopus 로고    scopus 로고
    • Training pi-sigma network by on-line gradient algorithm with penalty for small weight update
    • Xiong Y et al (2007) Training pi-sigma network by on-line gradient algorithm with penalty for small weight update. Neural Comput 19:3356-3368
    • (2007) Neural Comput , vol.19 , pp. 3356-3368
    • Xiong, Y.1
  • 63
    • 33747617153 scopus 로고    scopus 로고
    • Image compression and reconstruction using pit-sigma neural networks
    • Iyoda EM et al (2007) Image compression and reconstruction using pit-sigma neural networks. Soft Comput 11:53-61
    • (2007) Soft Comput , vol.11 , pp. 53-61
    • Iyoda, E.M.1
  • 64
    • 78649812181 scopus 로고    scopus 로고
    • Physical time series prediction using recurrent pi-sigma neural networks
    • Hussain AJ et al (2008) Physical time series prediction using recurrent pi-sigma neural networks. Int J Artif Intell Soft Comput 1(1):130-145
    • (2008) Int J Artif Intell Soft Comput , vol.1 , Issue.1 , pp. 130-145
    • Hussain, A.J.1
  • 65
    • 57649139565 scopus 로고    scopus 로고
    • A hybrid genetic learning algorithm for pi-sigma neural network and the analysis of its convergence
    • In:, IEEE Press
    • Nie Y, Deng W (2008) A hybrid genetic learning algorithm for pi-sigma neural network and the analysis of its convergence. In: Proceedings of fourth international conference on natural computation, IEEE Press, pp 19-23
    • (2008) Proceedings of fourth international conference on natural computation , pp. 19-23
    • Nie, Y.1    Deng, W.2
  • 66
    • 0032961082 scopus 로고    scopus 로고
    • A global learning algorithm for a RBF network
    • Zhu Q, Cai Y, Liu L (1999) A global learning algorithm for a RBF network. Neural Netw 12:527-540
    • (1999) Neural Netw , vol.12 , pp. 527-540
    • Zhu, Q.1    Cai, Y.2    Liu, L.3
  • 67
    • 38349047621 scopus 로고    scopus 로고
    • Imrpoving multiclass pattern recognition with a co-evolutionary RBFNN
    • Li M, Tian J, Chen F (2008) Imrpoving multiclass pattern recognition with a co-evolutionary RBFNN. Pattern Recognit Lett 29:392-406
    • (2008) Pattern Recognit Lett , vol.29 , pp. 392-406
    • Li, M.1    Tian, J.2    Chen, F.3
  • 68
    • 0032314219 scopus 로고    scopus 로고
    • Classification of incomplete feature vectors by radial basis function networks
    • Dybowski R (1998) Classification of incomplete feature vectors by radial basis function networks. Pattern Recognit Lett 19:1257-1264
    • (1998) Pattern Recognit Lett , vol.19 , pp. 1257-1264
    • Dybowski, R.1
  • 69
    • 0032123243 scopus 로고    scopus 로고
    • An efficient MDL based construction of RBF networks
    • Leonardis A, Bischof H (1998) An efficient MDL based construction of RBF networks. Neural Netw 11:963-973
    • (1998) Neural Netw , vol.11 , pp. 963-973
    • Leonardis, A.1    Bischof, H.2
  • 70
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimization and regularized orthogonal least square learning for radial basis function networks
    • Chen S, Wu Y, Luk BL (1999) Combined genetic algorithm optimization and regularized orthogonal least square learning for radial basis function networks. IEEE Tran Neural Netw 10(5):1239-1243
    • (1999) IEEE Tran Neural Netw , vol.10 , Issue.5 , pp. 1239-1243
    • Chen, S.1    Wu, Y.2    Luk, B.L.3
  • 72
    • 0022633119 scopus 로고
    • Long-term memory storage capacity of multiconnected neural networks
    • Peretto P, Niez JJ (1986) Long-term memory storage capacity of multiconnected neural networks. Biol Cybern 54:5363
    • (1986) Biol Cybern , vol.54 , pp. 5363
    • Peretto, P.1    Niez, J.J.2
  • 73
    • 0343037108 scopus 로고
    • Nonlinear discriminant functions and associative memories
    • In: Denker JS (ed, Amererican Institute of Physics, New York
    • Psaltis D, Park CH (1986) Nonlinear discriminant functions and associative memories. In: Denker JS (ed) Neural networks for computing. Amererican Institute of Physics, New York, pp 370-375
    • (1986) Neural networks for computing , pp. 370-375
    • Psaltis, D.1    Park, C.H.2
  • 74
    • 0011357814 scopus 로고
    • Multiconnected neural-network models
    • Gardner E (1987) Multiconnected neural-network models. J Phys A Math Gen 20:3453-3464
    • (1987) J Phys A Math Gen , vol.20 , pp. 3453-3464
    • Gardner, E.1
  • 75
    • 0242707047 scopus 로고
    • Storage capacity of generalized networks
    • Abbott LF, Arian Y (1987) Storage capacity of generalized networks. Phys Rev A 36:5091-5094
    • (1987) Phys Rev A , vol.36 , pp. 5091-5094
    • Abbott, L.F.1    Arian, Y.2
  • 77
    • 0023984374 scopus 로고
    • Capacities of multiconnected memory models
    • Horn D, Usher M (1988) Capacities of multiconnected memory models. J Phys France 49:389-395
    • (1988) J Phys France , vol.49 , pp. 389-395
    • Horn, D.1    Usher, M.2
  • 81
    • 77249087779 scopus 로고
    • Finding functional links for neural networks by evolutionary computation
    • Van de Merckt T et al (eds)
    • Haring B, Kok JN (1995) Finding functional links for neural networks by evolutionary computation. In: Van de Merckt T et al (eds) BENELEARN1995, proceedings of the fifth Belgian-Dutch conference on machine learning, Brussels, Belgium, pp 71-78
    • (1995) Proceedings of the fifth Belgian-Dutch conference on machine learning , pp. 71-78
    • Haring, B.1    Kok, J.N.2
  • 82
    • 0032804858 scopus 로고    scopus 로고
    • Planning with a functional neural network architecture
    • Panagiotopoulos DA et al (1999) Planning with a functional neural network architecture. IEEE Trans Neural Netw 10(1):115-127
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.1 , pp. 115-127
    • Panagiotopoulos, D.A.1
  • 83
    • 0033116436 scopus 로고    scopus 로고
    • Identification of non-linear dynamic systems using functional link artificial neural networks
    • Patra JC et al (1999) Identification of non-linear dynamic systems using functional link artificial neural networks. IEEE IEEE Trans Syst Man Cyber Part B Cybern 29(2):254-262
    • (1999) IEEE IEEE Trans Syst Man Cyber Part B Cybern , vol.29 , Issue.2 , pp. 254-262
    • Patra, J.C.1
  • 85
    • 84885596994 scopus 로고    scopus 로고
    • Dynamic functional link neural networks genetically evolved applied to system identification
    • In:, Bruges (Belgium)
    • Marcu T, Koppen-Seliger B (2004) Dynamic functional link neural networks genetically evolved applied to system identification. In: Proceedings of ESANN'2004, Bruges (Belgium), pp 115-120
    • (2004) Proceedings of ESANN'2004 , pp. 115-120
    • Marcu, T.1    Koppen-Seliger, B.2
  • 86
    • 0012594131 scopus 로고
    • A functional link neural network for adaptive channel equalization
    • Patra JC, Pal NR (1995) A functional link neural network for adaptive channel equalization. Signal Process 43:181-195
    • (1995) Signal Process , vol.43 , pp. 181-195
    • Patra, J.C.1    Pal, N.R.2
  • 87
    • 43049114898 scopus 로고    scopus 로고
    • Functional link neural network cascaded with Chebyshev orthogonal polynomial for non-linear channel equalization
    • Zhao H, Zhang J (2008) Functional link neural network cascaded with Chebyshev orthogonal polynomial for non-linear channel equalization. signal Process 88:1946-1957
    • (2008) Signal Process , vol.88 , pp. 1946-1957
    • Zhao, H.1    Zhang, J.2
  • 88
    • 84949774011 scopus 로고    scopus 로고
    • Feature selection for neural networks through functional links found by evolutionary computation
    • In: Liu X et al (eds), LNCS
    • Haring et al (1997) Feature selection for neural networks through functional links found by evolutionary computation. In: Liu X et al (eds) Adavnces in intelligent data analysis (IDA-97). LNCS 1280:199-210
    • (1997) Adavnces in intelligent data analysis (IDA-97). , vol.1280 , pp. 199-210
    • Haring1
  • 89
    • 0034723704 scopus 로고    scopus 로고
    • Modelling of an intelligent pressure sensor using functional link artificial neural networks
    • Patra JC et al (2000) Modelling of an intelligent pressure sensor using functional link artificial neural networks. ISA Trans 39:15-27
    • (2000) ISA Trans , vol.39 , pp. 15-27
    • Patra, J.C.1
  • 90
    • 58049124482 scopus 로고    scopus 로고
    • Genetic feature selection for optimal functional link neural network in classification
    • In: Fyfe C et al (eds)
    • Dehuri S et al (2008) Genetic feature selection for optimal functional link neural network in classification. In: Fyfe C et al (eds) IDEAL 2008, LNCS 5326:156-163
    • (2008) IDEAL 2008, LNCS , vol.5326 , pp. 156-163
    • Dehuri, S.1
  • 91
    • 77957814234 scopus 로고    scopus 로고
    • An improved scheme for digital watermarking using functional link artificial neural network
    • Majhi B et al (2005) An improved scheme for digital watermarking using functional link artificial neural network. J Comput Sci 1(2):169-174
    • (2005) J Comput Sci , vol.1 , Issue.2 , pp. 169-174
    • Majhi, B.1
  • 92
    • 84885652004 scopus 로고    scopus 로고
    • Functional link neural networks-based intelligent sensors for Harsh Environments
    • Patra JC et al (2008) Functional link neural networks-based intelligent sensors for Harsh Environments. Sens Transducers J 90:209-220
    • (2008) Sens Transducers J , vol.90 , pp. 209-220
    • Patra, J.C.1
  • 93
    • 0033436134 scopus 로고    scopus 로고
    • A functional link neural network for short term electric load forecasting
    • Dash PK et al (1999) A functional link neural network for short term electric load forecasting. J Intell Fuzzy Syst 7:209-221
    • (1999) J Intell Fuzzy Syst , vol.7 , pp. 209-221
    • Dash, P.K.1
  • 94
    • 69949102192 scopus 로고    scopus 로고
    • Application of ultrasonic waves coupled with functional link neural network for estimation of carrageenan concentration
    • Krishnaiah D et al (2008) Application of ultrasonic waves coupled with functional link neural network for estimation of carrageenan concentration. Int J Phys Sci 3(4):90-96
    • (2008) Int J Phys Sci , vol.3 , Issue.4 , pp. 90-96
    • Krishnaiah, D.1
  • 95
    • 33746630914 scopus 로고    scopus 로고
    • Degree of insecurity estimation in a power system using functional link neural network
    • Sing SN, Srivastava KN (2002) Degree of insecurity estimation in a power system using functional link neural network. ETEP 12(5):353-359
    • (2002) ETEP , vol.12 , Issue.5 , pp. 353-359
    • Sing, S.N.1    Srivastava, K.N.2
  • 96
    • 27344460283 scopus 로고    scopus 로고
    • A comparative study of three artificial neural networks for the detection and classification of gear faults
    • Abu-Mahfouz I-A (2005) A comparative study of three artificial neural networks for the detection and classification of gear faults. Int J Gen Syst 34(3):261-277
    • (2005) Int J Gen Syst , vol.34 , Issue.3 , pp. 261-277
    • Abu-Mahfouz, I.-A.1
  • 97
    • 34548186463 scopus 로고    scopus 로고
    • Functional-link net with fuzzy integral for bankruptcy prediction
    • Hu Y-C, Tseng F-M (2007) Functional-link net with fuzzy integral for bankruptcy prediction. Neurocomputing 70:2959-2968
    • (2007) Neurocomputing , vol.70 , pp. 2959-2968
    • Hu, Y.-C.1    Tseng, F.-M.2
  • 98
    • 0342980889 scopus 로고    scopus 로고
    • Unconstrained word-based approach for off-line script recognition using density based random vector functional link net
    • Park GH, Pao YH (2000) Unconstrained word-based approach for off-line script recognition using density based random vector functional link net. Neurocomputing 31:45-65
    • (2000) Neurocomputing , vol.31 , pp. 45-65
    • Park, G.H.1    Pao, Y.H.2
  • 99
    • 61849147847 scopus 로고    scopus 로고
    • Functional link nets with genetic algorithm based learning for robust non-linear interval regression analysis
    • doi:10.1016/J.neucom.2008.07.002
    • Hu Y-C (2008) Functional link nets with genetic algorithm based learning for robust non-linear interval regression analysis. Neurocomputing. doi:10.1016/J.neucom.2008.07.002
    • (2008) Neurocomputing
    • Hu, Y.-C.1
  • 100
    • 0031907489 scopus 로고    scopus 로고
    • An incremental adaptive implementation of functional link processing for function approximation, time series prediction, and system identification
    • Chen CLP et al (1998) An incremental adaptive implementation of functional link processing for function approximation, time series prediction, and system identification. Neurocomputing 18:11-31
    • (1998) Neurocomputing , vol.18 , pp. 11-31
    • Chen, C.L.P.1
  • 101
    • 4644303600 scopus 로고    scopus 로고
    • Reduced decision feed-back FLANN non-linear channel equaliser for digital communication systems
    • Weng W-D, Yen CT (2004) Reduced decision feed-back FLANN non-linear channel equaliser for digital communication systems. IEE Proc Commun 151(4):305-311
    • (2004) IEE Proc Commun , vol.151 , Issue.4 , pp. 305-311
    • Weng, W.-D.1    Yen, C.T.2
  • 102
    • 0031268760 scopus 로고    scopus 로고
    • A new adaptive functional link neural network based DFE for overcoming co-channel interference
    • Hussain A et al (1997) A new adaptive functional link neural network based DFE for overcoming co-channel interference. IEEE IEEE Trans Commun 45(11):1358-1362
    • (1997) IEEE IEEE Trans Commun , vol.45 , Issue.11 , pp. 1358-1362
    • Hussain, A.1
  • 103
    • 0033115775 scopus 로고    scopus 로고
    • Non-linear channel equalization for QAM signal constellation using artificial neural networks
    • Patra JC et al (1999) Non-linear channel equalization for QAM signal constellation using artificial neural networks. IEEE Tranasactions on Systems, Man, Cybernetics-Part B: Cybernetics 29(2):262-271
    • (1999) IEEE Tranasactions on Systems, Man, Cybernetics-Part B: Cybernetics , vol.29 , Issue.2 , pp. 262-271
    • Patra, J.C.1
  • 104
    • 33750961042 scopus 로고    scopus 로고
    • On-line system identification of complex systems using Chebyshev neural networks
    • Purwar S et al (2007) On-line system identification of complex systems using Chebyshev neural networks. Appl Soft Comput 7:364-372
    • (2007) Appl Soft Comput , vol.7 , pp. 364-372
    • Purwar, S.1
  • 105
    • 34147155203 scopus 로고    scopus 로고
    • A channel equalizer usi ng reduced decision feedback Chebyshev function link artificial neural networks
    • Weng W-D et al (2007) A channel equalizer usi ng reduced decision feedback Chebyshev function link artificial neural networks. Inf Sci 177:2642-2654
    • (2007) Inf Sci , vol.177 , pp. 2642-2654
    • Weng, W.-D.1
  • 106
    • 0036685272 scopus 로고    scopus 로고
    • Non-linear dynamic system identification using Chebyshev functional link artificial neural networks
    • Patra JC et al (2002) Non-linear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans Syst Man Cybern Part B Cybern 32(4):505-511
    • (2002) IEEE Trans Syst Man Cybern Part B Cybern , vol.32 , Issue.4 , pp. 505-511
    • Patra, J.C.1
  • 109
    • 0029287775 scopus 로고
    • A Markov chain analysis on simple genetic algorithms
    • Suzuki J (1995) A Markov chain analysis on simple genetic algorithms. IEEE Trans Syst Man Cybern 25(4):6-659
    • (1995) IEEE Trans Syst Man Cybern , vol.25 , Issue.4 , pp. 6-659
    • Suzuki, J.1
  • 112
    • 11844285519 scopus 로고
    • Epistasis variance: Suitability of a representation to genetic algorithms
    • Davidor Y (1990) Epistasis variance: suitability of a representation to genetic algorithms. Complex Syst 4:368-383
    • (1990) Complex Syst , vol.4 , pp. 368-383
    • Davidor, Y.1
  • 113
    • 0000308566 scopus 로고
    • Real coded genetic algorithms and interval schemata
    • In: Whitley LD (ed, Morgan Kaufmann, San Mateo
    • Eshelman LJ, Schaffer JD (1993) Real coded genetic algorithms and interval schemata. In: Whitley LD (ed) Foundation of genetic algorithms. Morgan Kaufmann, San Mateo, pp 187-202
    • (1993) Foundation of genetic algorithms , pp. 187-202
    • Eshelman, L.J.1    Schaffer, J.D.2
  • 114
    • 0003140039 scopus 로고
    • Predictive models for the breeder genetic algorithm I. Continuous parameters optimization
    • Muhlenbein H, Schlierkamp-Voosen D (1993) Predictive models for the breeder genetic algorithm I. Continuous parameters optimization. Evol Comput 1(1):24-49
    • (1993) Evol Comput , vol.1 , Issue.1 , pp. 24-49
    • Muhlenbein, H.1    Schlierkamp-Voosen, D.2
  • 115
    • 18144412736 scopus 로고    scopus 로고
    • A study of global optimization using particle swarms
    • Schutte JF, Groenwold AA (2005) A study of global optimization using particle swarms. J Glob Optim 31(1):93-108
    • (2005) J Glob Optim , vol.31 , Issue.1 , pp. 93-108
    • Schutte, J.F.1    Groenwold, A.A.2
  • 116
    • 38649139923 scopus 로고    scopus 로고
    • Improved particle swarm algorithms for global optimization
    • Ali MM, Kaelo P (2008) Improved particle swarm algorithms for global optimization. Appl Math Comput 196:578-593
    • (2008) Appl Math Comput , vol.196 , pp. 578-593
    • Ali, M.M.1    Kaelo, P.2
  • 117
    • 38649118854 scopus 로고    scopus 로고
    • Evolving artificial neural networks using an improved PSO and DPSO
    • Yu J, Wang S, Xi L (2008) Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 71:1054-1060
    • (2008) Neurocomputing , vol.71 , pp. 1054-1060
    • Yu, J.1    Wang, S.2    Xi, L.3
  • 118
    • 12144252495 scopus 로고    scopus 로고
    • An improved PSO-based ANN with simulated annealing technique
    • Da Y, Ge XR (2005) An improved PSO-based ANN with simulated annealing technique. Neurocomput Lett 63:527-533
    • (2005) Neurocomput Lett , vol.63 , pp. 527-533
    • Da, Y.1    Ge, X.R.2
  • 120
    • 0003049327 scopus 로고
    • Neural-net computing and intelligent control systems
    • Pao Y-H, Phillips SM, Sobajic DJ (1992) Neural-net computing and intelligent control systems. Int J Control 56(2):263-289
    • (1992) Int J Control , vol.56 , Issue.2 , pp. 263-289
    • Pao, Y.-H.1    Phillips, S.M.2    Sobajic, D.J.3
  • 121
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4:251-257
    • (1991) Neural Netw , vol.4 , pp. 251-257
    • Hornik, K.1
  • 123
    • 0032287679 scopus 로고    scopus 로고
    • The Chebyshev polynomial based unified model neural networks for function approximations
    • Lee TT, Jeng JT (1998) The Chebyshev polynomial based unified model neural networks for function approximations. IEEE Trans Syst Man Cybern Part B 28:925-935
    • (1998) IEEE Trans Syst Man Cybern Part B , vol.28 , pp. 925-935
    • Lee, T.T.1    Jeng, J.T.2
  • 124
    • 0010036424 scopus 로고
    • Pattern classification with Chebyshev neural network
    • Namatame A, Veda N (1992) Pattern classification with Chebyshev neural network. Int J Neural Netw 3:23-31
    • (1992) Int J Neural Netw , vol.3 , pp. 23-31
    • Namatame, A.1    Veda, N.2
  • 128
    • 0003216869 scopus 로고    scopus 로고
    • The particle swarm: Social adaptation in information processing systems
    • In: Corne D, Dorigo M, Glover F (eds, McGraw-Hill, Cambridge, UK
    • Kennedy J, Eberhart RC (1999) The particle swarm: social adaptation in information processing systems. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, Cambridge, UK, pp 379-387
    • (1999) New ideas in optimization , pp. 379-387
    • Kennedy, J.1    Eberhart, R.C.2
  • 130
    • 84879015433 scopus 로고    scopus 로고
    • Parameter selection in particle swarm optimization
    • Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. Evolutionary Programming VII, LNCS, Springer, Berlin 1447:591-600
    • (1998) Evolutionary Programming VII , vol.1447 , pp. 591-600
    • Shi, Y.1    Eberhart, R.C.2
  • 131
    • 0036589139 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm in size and shape optimization
    • Forie PC, Groenwold AA (2002) The particle swarm optimization algorithm in size and shape optimization. Struct Multidiscipl Optim 23(4):259-267
    • (2002) Struct Multidiscipl Optim , vol.23 , Issue.4 , pp. 259-267
    • Forie, P.C.1    Groenwold, A.A.2
  • 132
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm explosion, stability and convergence in a multidimensional complex space
    • Clerc M, Kennedy J (2002) The particle swarm explosion, stability and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58-73
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 133
    • 33847379879 scopus 로고    scopus 로고
    • A hybrid particle swarm optimizationback-propagation algorithm for feed-forward neural network training
    • Zhang JR et al (2007) A hybrid particle swarm optimizationback-propagation algorithm for feed-forward neural network training. Appl Math Comput 185:1026-1037
    • (2007) Appl Math Comput , vol.185 , pp. 1026-1037
    • Zhang, J.R.1
  • 134
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time varying acceleration coefficients
    • Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240-255
    • (2004) IEEE Trans Evol Comput , vol.8 , Issue.3 , pp. 240-255
    • Ratnaweera, A.1    Halgamuge, S.K.2    Watson, H.C.3
  • 135
    • 0023331258 scopus 로고
    • An introduction to computing with neural networks
    • Lippmann R (1987) An introduction to computing with neural networks. IEEE ASSP Mag 4:4-22
    • (1987) IEEE ASSP Mag , vol.4 , pp. 4-22
    • Lippmann, R.1
  • 138
    • 34547275841 scopus 로고    scopus 로고
    • Future trends in data mining
    • Kriegel H-P et al (2007) Future trends in data mining. Data Mining Knowl Discov 15(1):87-97
    • (2007) Data Mining Knowl Discov , vol.15 , Issue.1 , pp. 87-97
    • Kriegel, H.-P.1
  • 139
    • 2042515742 scopus 로고    scopus 로고
    • Neural networks in business: A survey of applications (1992-1998)
    • Vellido A, Lisboa PJG, Vaughan J (1999) Neural networks in business: a survey of applications (1992-1998). Expert Syst Appl 17:51-70
    • (1999) Expert Syst Appl , vol.17 , pp. 51-70
    • Vellido, A.1    Lisboa, P.J.G.2    Vaughan, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.