메뉴 건너뛰기




Volumn 19, Issue 14, 1998, Pages 1257-1264

Classification of incomplete feature vectors by radial basis function networks

Author keywords

EM algorithm; Gaussian mixture models; Imputation; Incomplete data; Radial basis functions

Indexed keywords

ALGORITHMS; MATHEMATICAL MODELS; MATRIX ALGEBRA; NEURAL NETWORKS; VECTORS;

EID: 0032314219     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8655(98)00096-8     Document Type: Article
Times cited : (13)

References (19)
  • 2
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead, D.S., Lowe, D., 1988. Multivariable functional interpolation and adaptive networks. Complex Systems 2, 321-355.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 3
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. B 39, 1-38.
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 6
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximators
    • Hartman, E.J., Keeler, J.D., Kowalski, J.M., 1990. Layered neural networks with Gaussian hidden units as universal approximators. Neural Computation 2, 210-215.
    • (1990) Neural Computation , vol.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.D.2    Kowalski, J.M.3
  • 10
    • 0002746853 scopus 로고
    • The analysis of social science data with missing values
    • Fox, J., Long, J.S. (Eds.), Sage, Newbury Park, CA
    • Little, R.J.A., Rubin, D.B., 1990. The analysis of social science data with missing values. In: Fox, J., Long, J.S. (Eds.), Modern Methods of Data Analysis. Sage, Newbury Park, CA, pp. 374-409.
    • (1990) Modern Methods of Data Analysis , pp. 374-409
    • Little, R.J.A.1    Rubin, D.B.2
  • 14
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody, J., Darken, C.J., 1989. Fast learning in networks of locally-tuned processing units. Neural Computation 1, 281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 15
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen, E., 1961. On estimation of a probability density function and mode. Ann. Math. Statist. 33, 1065-1076.
    • (1961) Ann. Math. Statist. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 16
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio, T., Girosi, F., 1990. Regularization algorithms for learning that are equivalent to multilayer networks. Science 247, 978-982.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 17
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner, R.A., Walker, H.F., 1984. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review 26, 195-239.
    • (1984) SIAM Review , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.