메뉴 건너뛰기




Volumn , Issue , 2008, Pages 69-80

Online learning of approximate maximum p-norm margin classifiers with bias

Author keywords

[No Author keywords available]

Indexed keywords

LINEAR CLASSIFIERS; MARGIN CLASSIFIERS; MAXIMUM MARGIN; ONLINE LEARNING; ONLINE LEARNING ALGORITHMS;

EID: 80054116173     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (35)
  • 1
    • 0000759079 scopus 로고
    • The adatron; an adaptive perceptron algorithm
    • J. K. Anlauf and M. Biehl. The adatron; an adaptive perceptron algorithm. Europhysics Letters, 10: 687-692, 1989.
    • (1989) Europhysics Letters , vol.10 , pp. 687-692
    • Anlauf, J.K.1    Biehl, M.2
  • 2
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • A. Asuncion and D. J. Newman. UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences, http://mlearn.ics.uci.edu/MLRepository.html, 2007.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 3
    • 0035351666 scopus 로고    scopus 로고
    • A weak-to-strong convergence principle for fejér-monotone methods in hilbelt spaces
    • H. H. Bauschke and P. L. Combettes. A weak-to-strong convergence principle for Fejér-monotone methods in hilbelt spaces. Mathematics of Operations Research, 26(2): 248-264, 2001.
    • (2001) Mathematics of Operations Research , vol.26 , Issue.2 , pp. 248-264
    • Bauschke, H.H.1    Combettes, P.L.2
  • 8
    • 10044235999 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • C. C. Chang and C. J. Lin. Libsvm: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.
    • (2001) Software
    • Chang, C.C.1    Lin, C.J.2
  • 9
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20: 273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. Machine Learning, 37(3): 277-299, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-299
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 84868111801 scopus 로고    scopus 로고
    • A new approximate maximal margin classification algorithm
    • C. Gentile. A new approximate maximal margin classification algorithm. Journal of Machine Learning Research, 2: 213-242, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 213-242
    • Gentile, C.1
  • 14
    • 0344875562 scopus 로고    scopus 로고
    • The robustness of the p-norm algorithms
    • C. Gentile. The robustness of the p-norm algorithms. Machine Learning, 53(3): 265-299, 2003.
    • (2003) Machine Learning , vol.53 , Issue.3 , pp. 265-299
    • Gentile, C.1
  • 16
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • A. Smola B. Schölkopf, C. Burges, editor MIT Press
    • T. Joachims. Making large-scale support vector machine learning practical. In A. Smola B. Schölkopf, C. Burges, editor, Advances in kernel methods - Support vector learning, pages 169-184. MIT Press, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 20
    • 0031375503 scopus 로고    scopus 로고
    • The perceptron algorithm versus winnow: Linear versus logarithmic mistake bounds when few input variables are relevant
    • J. Kivinen, M. K. Warmuth, and P. Auer. The perceptron algorithm versus winnow: linear versus logarithmic mistake bounds when few input variables are relevant. Artificial Intelligence, 97(1-2): 325-343, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 325-343
    • Kivinen, J.1    Warmuth, M.K.2    Auer, P.3
  • 21
    • 0003357515 scopus 로고    scopus 로고
    • Maximum margin perceptron
    • B. Scholkopf A. Smola, P. Bartlett and D. Schuurmans, editors MIT Press
    • A. Kowalczyk. Maximum margin perceptron. In B. Scholkopf A. Smola, P. Bartlett and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 75-114. MIT Press, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 75-114
    • Kowalczyk, A.1
  • 22
    • 0036161258 scopus 로고    scopus 로고
    • The relaxed online maximum margin algorithm
    • Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine Learning, 46(1-3): 361-387, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 361-387
    • Li, Y.1    Long, P.M.2
  • 23
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2(4): 285-318, 1988.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 285-318
    • Littlestone, N.1
  • 27
    • 0000327937 scopus 로고
    • On convergence proofs on perceptrons
    • Polytechnic Institute of Brooklyn
    • A. B. Novikoff. On convergence proofs on perceptrons. In Symposium on the Mathematical Theory of Automata, volume 12, pages 615-622. Polytechnic Institute of Brooklyn, 1962.
    • (1962) Symposium on the Mathematical Theory of Automata , vol.12 , pp. 615-622
    • Novikoff, A.B.1
  • 29
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Scholköpf, C. Burges, and A. Smola, editors MIT Press
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Scholköpf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208. MIT Press, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 31
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65: 386-408, 1959.
    • (1959) Psychological Review , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 32
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5): 1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.