메뉴 건너뛰기




Volumn 11, Issue 1, 2009, Pages 127-141

Advances in metaheuristics for gene selection and classification of microarray data

Author keywords

Classification; Gene selection; Genetic algorithm; Local search; Memetic algorithm; Microarray data analysis

Indexed keywords

ALGORITHM; DNA MICROARRAY; GENE; REVIEW;

EID: 77950356812     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbp035     Document Type: Article
Times cited : (60)

References (59)
  • 1
    • 22244458625 scopus 로고    scopus 로고
    • Applications of DNA microarrays in biology
    • Stoughton RB. Applications of DNA microarrays in biology. Ann Rev Biochem 2005;74:53-82.
    • (2005) Ann Rev Biochem , vol.74 , pp. 53-82
    • Stoughton, R.B.1
  • 3
    • 57949105676 scopus 로고    scopus 로고
    • Biclustering via optimal re-ordering of data matrices in systems biology: rigorous methods and comparative studies
    • Dimaggio P, Mcallister S, Floudas C, et al. Biclustering via optimal re-ordering of data matrices in systems biology: rigorous methods and comparative studies. BMC Bioinformatics 2008;9:458.
    • (2008) BMC Bioinformatics , vol.9 , pp. 458
    • Dimaggio, P.1    Mcallister, S.2    Floudas, C.3
  • 6
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell 1997;97:273-324.
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 7
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157-82.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 8
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larraga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007;23: 2507-17.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larraga, P.3
  • 9
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed T. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002;97:77-87.
    • (2002) J Am Stat Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 10
    • 0042388208 scopus 로고    scopus 로고
    • Rankgene: identification of diagnostic genes based on expression data
    • Su Y, Murali TM, Pavlovic V, et al. Rankgene: identification of diagnostic genes based on expression data. Bioinformatics 2003;19:1578-9.
    • (2003) Bioinformatics , vol.19 , pp. 1578-1579
    • Su, Y.1    Murali, T.M.2    Pavlovic, V.3
  • 11
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • Amaldi E, Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor. Comput. Sci. 1998;209:237-60.
    • (1998) Theor. Comput. Sci. , vol.209 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 12
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Mach Learn 2002;46:389-422.
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 13
    • 49949090353 scopus 로고    scopus 로고
    • Penalized feature selection and classification in bioinformatics
    • Ma S, Huang J. Penalized feature selection and classification in bioinformatics. Brief. Bioinform. 2008;9:392-403.
    • (2008) Brief. Bioinform. , vol.9 , pp. 392-403
    • Ma, S.1    Huang, J.2
  • 15
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • Braga-Neto U, Dougherty ER. Is cross-validation valid for small-sample microarray classification? Bioinformatics 2004; 20:374-80.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.1    Dougherty, E.R.2
  • 16
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise C, McLachlan G. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA 2002;99:6562-6.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.2
  • 17
    • 0037245343 scopus 로고    scopus 로고
    • Pitfalls in the use of dna microarray data for diagnostic and prognostic classification
    • Simon R, Radmacher MD, Dobbin K, et al. Pitfalls in the use of dna microarray data for diagnostic and prognostic classification. JNatl Cancer Inst 2003;95:14-18.
    • (2003) JNatl Cancer Inst , vol.95 , pp. 14-18
    • Simon, R.1    Radmacher, M.D.2    Dobbin, K.3
  • 18
    • 58749086251 scopus 로고    scopus 로고
    • Mistakes in validating the accuracy of a prediction classifier in high-dimensional but small-sample microarray data
    • Lee S. Mistakes in validating the accuracy of a prediction classifier in high-dimensional but small-sample microarray data. Stat Methods Med Res 2008;17:635-42.
    • (2008) Stat Methods Med Res , vol.17 , pp. 635-642
    • Lee, S.1
  • 19
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: from disarray to consolidation and consensus
    • Allison DB, Cui X, Page GP, et al. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 2006;7:55-65.
    • (2006) Nat Rev Genet , vol.7 , pp. 55-65
    • Allison, D.B.1    Cui, X.2    Page, G.P.3
  • 22
    • 1542559402 scopus 로고    scopus 로고
    • Support vector machine applications in computational biology
    • Schölkopf B, Tsuda K, Vert J-P, (eds). MIT Press
    • Noble WS. Support vector machine applications in computational biology. In: Schölkopf B, Tsuda K, Vert J-P, (eds). Kernel Methods in Computational Biology. MIT Press, 2004, 71-92.
    • (2004) Kernel Methods in Computational Biology , pp. 71-92
    • Noble, W.S.1
  • 23
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • Rakotomamonjy A. Variable selection using SVM-based criteria. Mach Learn Res 2003;3:1357-70.
    • (2003) Mach Learn Res , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 24
    • 24644477601 scopus 로고    scopus 로고
    • Bayesian learning with local support vector machines for cancer classification with gene expression data
    • Berlin/Heidelberg: Springer
    • Marchiori E, Sebag M. Bayesian learning with local support vector machines for cancer classification with gene expression data. In: EvoWorkshops-05, Lausanne, Switzerland, Vol. 3449 of Lecture Notes in Computer Science. Berlin/Heidelberg: Springer, 2005;74-83.
    • (2005) EvoWorkshops-05, Lausanne, Switzerland, of Lecture Notes in Computer Science , vol.3449 , pp. 74-83
    • Marchiori, E.1    Sebag, M.2
  • 27
    • 0003602231 scopus 로고    scopus 로고
    • Bäck T, Fogel DB, Michalewicz Z (eds). Berlin/Heidelberg: Springer
    • Bäck T, Fogel DB, Michalewicz Z (eds). Handbook of Evolutionary Computation. Berlin/Heidelberg: Springer, 1997.
    • (1997) Handbook of Evolutionary Computation
  • 28
    • 84901451540 scopus 로고    scopus 로고
    • Selecting informative genes using a multiobjective evolutionary algorithm
    • Hawaii, USA IEEE Press
    • Liu J, Iba H. Selecting informative genes using a multiobjective evolutionary algorithm. Congress on Evolutionary Computation, Hawaii, USA, vol. 1. IEEE Press, 2002, 297-302.
    • (2002) Congress on Evolutionary Computation , vol.1 , pp. 297-302
    • Liu, J.1    Iba, H.2
  • 29
    • 0004215426 scopus 로고    scopus 로고
    • Boston: Kluwer Academic Publishers
    • Glover F, Laguna M. Tabu Search. Boston: Kluwer Academic Publishers, 1997.
    • (1997) Tabu Search
    • Glover, F.1    Laguna, M.2
  • 30
    • 77950817493 scopus 로고    scopus 로고
    • SVM-based local search for gene selection and classification of microarray data
    • Elloumi M, Küng J, Linial M, Murphy RF, Schneider K, Toma C (eds.) Berlin/Heidelberg: Springer
    • Hernandez-Hernandez JC, Duval B, Hao J-K. SVM-based local search for gene selection and classification of microarray data. In: Elloumi M, Küng J, Linial M, Murphy RF, Schneider K, Toma C (eds.) BIRD-08-Communications in Computer and Information Science, Vol. 13. Berlin/Heidelberg: Springer, 2008, 499-508.
    • (2008) BIRD-08-Communications in Computer and Information Science , vol.13 , pp. 499-508
    • Hernandez-Hernandez, J.C.1    Duval, B.2    Hao, J.-K.3
  • 31
    • 0005386585 scopus 로고    scopus 로고
    • Iterated local search
    • Glover F, Kochenberger G (eds). Berlin/Heidelberg: Springer
    • Lourenco HR, Martin O, Stützle T. Iterated local search. In: Glover F, Kochenberger G (eds). Handbook of Metaheuristics. Berlin/Heidelberg: Springer, 2003.
    • (2003) Handbook of Metaheuristics
    • Lourenco, H.R.1    Martin, O.2    Stützle, T.3
  • 32
    • 67650660995 scopus 로고    scopus 로고
    • A critical element-guided perturbation strategy for iterated local search
    • Cotta C, Cowling P, (eds). Berlin/Heidelberg: Springer
    • Lü Z, Hao J-K. A critical element-guided perturbation strategy for iterated local search. In: Cotta C, Cowling P, (eds). EvoCOP-09, Tübingen, Germany, Vol. 5482 of Lecture Notes in Computer Science. Berlin/Heidelberg: Springer, 2009;1-12.
    • (2009) EvoCOP-09, Tübingen, Germany, of Lecture Notes in Computer Science , vol.5482 , pp. 1-12
    • Lü, Z.1    Hao, J.-K.2
  • 36
    • 38049058802 scopus 로고    scopus 로고
    • A genetic embedded approach for gene selection and classification of microarray data
    • Marchiori E, Moore JH, Rajapakse JC, (eds), Berlin/Heidelberg: Springer
    • Hernandez Hernandez JC, Duval B, Hao J-K. A genetic embedded approach for gene selection and classification of microarray data. In: Marchiori E, Moore JH, Rajapakse JC, (eds). EvoBIO-07,Vol.4447 of LectureNotes inComputer Science. Berlin/Heidelberg: Springer, 2007, 90-101.
    • (2007) EvoBIO-07, of LectureNotes inComputer Science , vol.4447 , pp. 90-101
    • Hernandez Hernandez, J.C.1    Duval, B.2    Hao, J.-K.3
  • 37
    • 57049136560 scopus 로고    scopus 로고
    • Gene selection for microarray data by a LDA-based genetic algorithm
    • Chetty M, Ngom A, Ahmad S (eds), Berlin/Heidelberg: Springer
    • Bonilla Huerta E, Duval B, Hao J-K. Gene selection for microarray data by a LDA-based genetic algorithm. In: Chetty M, Ngom A, Ahmad S (eds). PRIB-08, Melbourne, Australia, Vol. 5265 of Lecture Notes in Bioinformatics. Berlin/ Heidelberg: Springer, 2008, 250-61.
    • (2008) PRIB-08, Melbourne, Australia, of Lecture Notes in Bioinformatics , vol.5265 , pp. 250-261
    • Bonilla Huerta, E.1    Duval, B.2    Hao, J.-K.3
  • 38
    • 44649157882 scopus 로고    scopus 로고
    • A study of crossover operators for gene selection of microarray data
    • Monmarché N, Talbi E-G, Collet P, Schoenauer M, Lutton E (eds). Berlin/Heidelberg: Springer
    • Hernandez Hernandez JC, Duval B, Hao J-K. A study of crossover operators for gene selection of microarray data. In: Monmarché N, Talbi E-G, Collet P, Schoenauer M, Lutton E (eds). EA-07, Vol. 4926 of Lecture Notes in Computer Science. Berlin/Heidelberg: Springer, 2007, 243-54.
    • (2007) EA-07, of Lecture Notes in Computer Science , vol.4926 , pp. 243-254
    • Hernandez Hernandez, J.C.1    Duval, B.2    Hao, J.-K.3
  • 39
  • 40
    • 0002345223 scopus 로고    scopus 로고
    • Memetic algorithms: a short introduction
    • Ch. 14. In: Corne D, Dorigo M, Glover F (eds). McGraw-Hill
    • Moscato P. Memetic algorithms: a short introduction, Ch. 14. In: Corne D, Dorigo M, Glover F (eds). New Ideas in Optimization. McGraw-Hill, 1999, 219-34.
    • (1999) New Ideas in Optimization , pp. 219-234
    • Moscato, P.1
  • 41
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T, Slonim D, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531-7.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Tamayo, P.3
  • 42
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U, Barkai N, Notterman D, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 1999;96:6745-50.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3
  • 43
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • Van't Veer LJ, Dai H, Van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-6.
    • (2002) Nature , vol.415 , pp. 530-536
    • Van't Veer, L.J.1    Dai, H.2    Van de Vijver, M.J.3
  • 44
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon GJ, Jensen RV, Hsiao LL, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res 2002;17:4963-7.
    • (2002) Cancer Res , vol.17 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    Hsiao, L.L.3
  • 45
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D, Febbo P, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002;1: 203-9.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1    Febbo, P.2    Ross, K.3
  • 46
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359:572-7.
    • (2002) Lancet , vol.359 , pp. 572-577
    • Petricoin, E.F.1    Ardekani, A.M.2    Hitt, B.A.3
  • 47
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy SL, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002;415:436-42.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1    Tamayo, P.2    Gaasenbeek, M.3
  • 48
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large (B)-cell lymphoma identified by gene expression profiling
    • Alizadeh A, Eisen MB, Davis RE, et al. Distinct types of diffuse large (B)-cell lymphoma identified by gene expression profiling. Nature 2000;403:503-11.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.1    Eisen, M.B.2    Davis, R.E.3
  • 49
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T, Cristianini N, Duffy N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000;16: 906-14.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1    Cristianini, N.2    Duffy, N.3
  • 50
    • 13244252329 scopus 로고    scopus 로고
    • A combinational feature selection and ensemble neural network method for classification of gene expression data
    • Liu B, Cui Q, Jiang T, Ma S. A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics 2004;5:1-12.
    • (2004) BMC Bioinformatics , vol.5 , pp. 1-12
    • Liu, B.1    Cui, Q.2    Jiang, T.3    Ma, S.4
  • 51
    • 34247154511 scopus 로고    scopus 로고
    • Cancer classification using ensemble of neural networks with multiple significant gene subsets
    • Cho S-B, Won H-H. Cancer classification using ensemble of neural networks with multiple significant gene subsets. Appl Intell 2007;26:243-50.
    • (2007) Appl Intell , vol.26 , pp. 243-250
    • Cho, S.-B.1    Won, H.-H.2
  • 52
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: is there a unique set?
    • Ein-Dor L, Kela I, Getz G, et al. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 2004;21:171-8.
    • (2004) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3
  • 53
    • 33847162049 scopus 로고    scopus 로고
    • Classification of microarray data using gene networks
    • Rapaport F, Zinovyev A, Dutreix M, et al. Classification of microarray data using gene networks. BMC Bioinformatics 2007;8:35.
    • (2007) BMC Bioinformatics , vol.8 , pp. 35
    • Rapaport, F.1    Zinovyev, A.2    Dutreix, M.3
  • 54
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
    • Li L, Weinberg C, Darden T, et al. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001;17:1131-42.
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.2    Darden, T.3
  • 55
    • 0037245772 scopus 로고    scopus 로고
    • Genetic algorithms applied to multi-class prediction for the analysis of gene expression data
    • Ooi CH, Tan P. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 2003;19:37-44.
    • (2003) Bioinformatics , vol.19 , pp. 37-44
    • Ooi, C.H.1    Tan, P.2
  • 56
    • 0344872506 scopus 로고    scopus 로고
    • Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines
    • Peng S, Xu Q, Ling XB, et al. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. FEBS Lett. 2003;555:358-62.
    • (2003) FEBS Lett. , vol.555 , pp. 358-362
    • Peng, S.1    Xu, Q.2    Ling, X.B.3
  • 57
    • 39749192053 scopus 로고    scopus 로고
    • Gene selection using genetic algorithm and support vectors machines
    • Li S, Wu X, Hu X. Gene selection using genetic algorithm and support vectors machines. Soft Comput 2008;12:693-8.
    • (2008) Soft Comput , vol.12 , pp. 693-698
    • Li, S.1    Wu, X.2    Hu, X.3
  • 58
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes
    • Jirapech-Umpai T, Stuart Aitken J. Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinformatics 2005;6:148.
    • (2005) BMC Bioinformatics , vol.6 , pp. 148
    • Jirapech-Umpai, T.1    Stuart Aitken, J.2
  • 59
    • 34250896121 scopus 로고    scopus 로고
    • Markov blanket-embedded genetic algorithm for selection
    • Zhu Z, Ong YS, Dash M. Markov blanket-embedded genetic algorithm for selection. Pattern Recognition 2007;40: 3236-48.
    • (2007) Pattern Recognition , vol.40 , pp. 3236-3248
    • Zhu, Z.1    Ong, Y.S.2    Dash, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.