메뉴 건너뛰기




Volumn 29, Issue 1, 2011, Pages 1-24

Merging local patterns using an evolutionary approach

Author keywords

Distributed data mining; Genetic algorithms; Multi agent systems; Multi database mining

Indexed keywords


EID: 80053318379     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-010-0332-x     Document Type: Article
Times cited : (5)

References (44)
  • 1
    • 80053313418 scopus 로고    scopus 로고
    • ECML, PKDD ECML PKDD 2006 discovery challenge. Downloaded in 2010, from
    • ECML, PKDD (2006) ECML PKDD 2006 discovery challenge. Downloaded in 2010, from http://www. ecmlpkdd2006. org/challenge. html.
    • (2006)
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. J Mach Learn 36(1-2): 105-139.
    • (1999) J Mach Learn , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2): 123-140.
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • Breiman L (2001) Random forest. Mach Learn 45(1): 5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Dietterich TG (2000) Ensemble methods in machine learning. Multiple Classifier Syst 1857: 1-15.
    • (2000) Multiple Classifier Syst , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 9
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski S, Zenko B (2004) Is combining classifiers with stacking better than selecting the best one?. Mach Learn 54(3): 255-273.
    • (2004) Mach Learn , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 10
    • 63049091895 scopus 로고    scopus 로고
    • A review of evolutionary algorithms for data mining
    • O. Maimon and L. Rokach (Eds.), Berlin: Springer
    • Freitas A (2007) A review of evolutionary algorithms for data mining. In: Maimon O, Rokach L (eds) Soft computing for knowledge discovery and data mining. Springer, Berlin, pp 61-93.
    • (2007) Soft Computing for Knowledge Discovery and Data Mining , pp. 61-93
    • Freitas, A.1
  • 12
    • 0034541162 scopus 로고    scopus 로고
    • Cascade generalization
    • Gama J, Brazdil P (2000) Cascade generalization. Mach Learn 41(3): 315-343.
    • (2000) Mach Learn , vol.41 , Issue.3 , pp. 315-343
    • Gama, J.1    Brazdil, P.2
  • 13
    • 33846550644 scopus 로고    scopus 로고
    • Nonlinear boosting projections for ensemble construction
    • García-Pedrajas N, García-Osorio C, García-Osorio C (2007) Nonlinear boosting projections for ensemble construction. J Mach Learn Res 8: 1-33.
    • (2007) J Mach Learn Res , vol.8 , pp. 1-33
    • García-Pedrajas, N.1    García-Osorio, C.2
  • 16
    • 70350527009 scopus 로고    scopus 로고
    • Experiments in multi agent learning
    • Third International Workshop, HAIS 2008. Springer, Burgos Spain
    • Gaya MC, Giráldez JI (2008) Experiments in multi agent learning. In: Hybrid artificial intelligence systems, Third International Workshop, HAIS 2008. Springer, Burgos Spain, pp 78-85.
    • (2008) Hybrid artificial intelligence systems , pp. 78-85
    • Gaya, M.C.1    Giráldez, J.I.2
  • 17
    • 58149203529 scopus 로고    scopus 로고
    • Techniques for distributed theory synthesis in multiagent systems
    • DCAI 2008 advances in soft computing. Springer, Salamanca Spain
    • Gaya MC, Giráldez JI (2008) Techniques for distributed theory synthesis in multiagent systems. In: International symposium on distributed computing and artificial intelligence, DCAI 2008 advances in soft computing. Springer, Salamanca Spain, pp 395-402.
    • (2008) International symposium on distributed computing and artificial intelligence , pp. 395-402
    • Gaya, M.C.1    Giráldez, J.I.2
  • 19
    • 57149108333 scopus 로고    scopus 로고
    • Multirelational classification: a multiple view approach
    • Guo H, Viktor HL (2008) Multirelational classification: a multiple view approach. Knowledge Inf Syst 17(3): 287-312.
    • (2008) Knowledge Inf Syst , vol.17 , Issue.3 , pp. 287-312
    • Guo, H.1    Viktor, H.L.2
  • 22
    • 84947786689 scopus 로고    scopus 로고
    • Lecture notes in computer science: advances in pattern recognition
    • Ho T (1998) Nearest neighbors in random subspaces. Lecture notes in computer science: advances in pattern recognition, pp 640-648.
    • (1998) Nearest neighbors in random subspaces , pp. 640-648
    • Ho, T.1
  • 23
    • 0035388008 scopus 로고    scopus 로고
    • Towards multidatabase mining: identifying relevant databases
    • Hongjun HL, Liu H, Lu H, Yao J (2001) Towards multidatabase mining: identifying relevant databases. IEEE Trans Knowl Data Eng 13(4): 541-553.
    • (2001) IEEE Trans Knowl Data Eng , vol.13 , Issue.4 , pp. 541-553
    • Hongjun, H.L.1    Liu, H.2    Lu, H.3    Yao, J.4
  • 24
    • 33144480118 scopus 로고    scopus 로고
    • Optimal ensemble construction via meta-evolutionary ensembles
    • Kim Y, Street WN, Menczer F (2006) Optimal ensemble construction via meta-evolutionary ensembles. Expert Syst Appl 30(4): 705-714.
    • (2006) Expert Syst Appl , vol.30 , Issue.4 , pp. 705-714
    • Kim, Y.1    Street, W.N.2    Menczer, F.3
  • 27
    • 0348151971 scopus 로고    scopus 로고
    • Combining classifiers: soft computing solutions
    • S. K. Pal and A. Pal (Eds.), Singapore: World Scientific Publishing Co
    • Kuncheva LI (2001) Combining classifiers: soft computing solutions. In: Pal SK, Pal A (eds) Pattern recognition: from classical to modern approaches. World Scientific Publishing Co, Singapore, pp 427-452.
    • (2001) Pattern Recognition: From Classical to Modern Approaches , pp. 427-452
    • Kuncheva, L.I.1
  • 28
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles. Mach Learn 51(2): 181-207.
    • (2003) Mach Learn , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 30
    • 68349137913 scopus 로고    scopus 로고
    • A distributed approach to enabling privacy-preserving model-based classifier training
    • Luo H, Fan J, Lin X, Zhou A, Bertino E (2009) A distributed approach to enabling privacy-preserving model-based classifier training. Knowledge Inf Syst 20(2): 157-185.
    • (2009) Knowledge Inf Syst , vol.20 , Issue.2 , pp. 157-185
    • Luo, H.1    Fan, J.2    Lin, X.3    Zhou, A.4    Bertino, E.5
  • 31
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • Merz CJ (1999) Using correspondence analysis to combine classifiers. Mach Learn 36(1-2): 33-58.
    • (1999) Mach Learn , vol.36 , Issue.1-2 , pp. 33-58
    • Merz, C.J.1
  • 33
    • 8344282137 scopus 로고
    • C4.5: Programs for machine learning
    • Quinlan R (1994) C4. 5: Programs for machine learning. Mach Learn 16(3): 235-240.
    • (1994) Mach Learn , vol.16 , Issue.3 , pp. 235-240
    • Quinlan, R.1
  • 34
    • 57149099822 scopus 로고    scopus 로고
    • Modified algorithms for synthesizing high-frequency rules from different data sources
    • Ramkumar T, Srinivasan R (2008) Modified algorithms for synthesizing high-frequency rules from different data sources. Knowledge Inf Syst 17(3): 313-334.
    • (2008) Knowledge Inf Syst , vol.17 , Issue.3 , pp. 313-334
    • Ramkumar, T.1    Srinivasan, R.2
  • 38
    • 0037365188 scopus 로고    scopus 로고
    • Combining classifiers with meta decision trees
    • Todorovski L, Dzeroski S (2003) Combining classifiers with meta decision trees. Mach Learn 50(3): 223-249.
    • (2003) Mach Learn , vol.50 , Issue.3 , pp. 223-249
    • Todorovski, L.1    Dzeroski, S.2
  • 39
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: a technique for combining boosting and wagging
    • Webb GI (2000) MultiBoosting: a technique for combining boosting and wagging. Mach Learn 40(2): 159-196.
    • (2000) Mach Learn , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 41
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH (1992) Stacked generalization. Neural Netw 5: 241-259.
    • (1992) Neural Netw , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 42
    • 0037339975 scopus 로고    scopus 로고
    • Synthesizing high-frequency rules from different data sources
    • Wu X, Zhang S (2003) Synthesizing high-frequency rules from different data sources. IEEE Trans Knowledge Data Eng 15(2): 353-367.
    • (2003) IEEE Trans Knowledge Data Eng , vol.15 , Issue.2 , pp. 353-367
    • Wu, X.1    Zhang, S.2
  • 43
    • 33646589614 scopus 로고    scopus 로고
    • Mining multiple data sources: local pattern analysis
    • Zhang S, Zaki MJ (2006) Mining multiple data sources: local pattern analysis. Data Mining Knowledge Discovery 12(2-3): 121-125.
    • (2006) Data Mining Knowledge Discovery , vol.12 , Issue.2-3 , pp. 121-125
    • Zhang, S.1    Zaki, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.