메뉴 건너뛰기




Volumn 17, Issue 3, 2008, Pages 431-456

Parallell interacting MCMC for learning of topologies of graphical models

Author keywords

Equivalence search; Learning graphical models; MCMC

Indexed keywords

EDUCATION; ELECTRIC NETWORK TOPOLOGY; GRAPHIC METHODS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MARKOV PROCESSES; MODEL STRUCTURES; NETWORK PROTOCOLS; PARALLEL ALGORITHMS; SENSOR NETWORKS; SET THEORY; SPEECH RECOGNITION; STOCHASTIC MODELS; STOCHASTIC PROGRAMMING; TOPOLOGY;

EID: 54249168561     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-008-0099-9     Document Type: Article
Times cited : (42)

References (45)
  • 2
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of Markov equivalence classes for acyclic digraphs
    • SA Andersson D Madigan MD Perlman 1997 A characterization of Markov equivalence classes for acyclic digraphs Ann Statist 25 505 541
    • (1997) Ann Statist , vol.25 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 5
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian network structures
    • DM Chickering 2002 Learning equivalence classes of Bayesian network structures J Mach Learn Res 2 445 498
    • (2002) J Mach Learn Res , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 6
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • DM Chickering 2002 Optimal structure identification with greedy search J Mach Learn Res 3 507 554
    • (2002) J Mach Learn Res , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 7
    • 34249832377 scopus 로고
    • A bayesian method for the induction of probabilistic networks from data
    • G Cooper E Hershkovitz 1992 A bayesian method for the induction of probabilistic networks from data Mach Learn 9 309 347
    • (1992) Mach Learn , vol.9 , pp. 309-347
    • Cooper, G.1    Hershkovitz, E.2
  • 8
    • 0038511257 scopus 로고    scopus 로고
    • Bayesian graphical model determination using decision theory
    • J Corander 2003 Bayesian graphical model determination using decision theory J Multivariate Anal 85 253 266
    • (2003) J Multivariate Anal , vol.85 , pp. 253-266
    • Corander, J.1
  • 9
    • 33750036659 scopus 로고    scopus 로고
    • Bayesian model learning based on parallel mcmc strategy
    • J Corander M Gyllenberg T Koski 2006 Bayesian model learning based on parallel mcmc strategy Stat Comput 16 355 362
    • (2006) Stat Comput , vol.16 , pp. 355-362
    • Corander, J.1    Gyllenberg, M.2    Koski, T.3
  • 11
    • 0002384709 scopus 로고
    • Conditional independence in statistical theory
    • AP Dawid 1979 Conditional independence in statistical theory J Roy Stat Soc B 41 1 31
    • (1979) J Roy Stat Soc B , vol.41 , pp. 1-31
    • Dawid, A.P.1
  • 12
    • 21344482755 scopus 로고
    • Hyper-Markov laws in the statistical analysis of decomposable graphical models
    • AP Dawid SL Lauritzen 1993 Hyper-Markov laws in the statistical analysis of decomposable graphical models Ann Statist 21 1272 1317
    • (1993) Ann Statist , vol.21 , pp. 1272-1317
    • Dawid, A.P.1    Lauritzen, S.L.2
  • 13
    • 0000860415 scopus 로고    scopus 로고
    • Markov chain monte carlo model determination for hierarchical and graphical log-linear models
    • P Dellaportas J Forster 1999 Markov chain monte carlo model determination for hierarchical and graphical log-linear models Biometrika 86 615 633
    • (1999) Biometrika , vol.86 , pp. 615-633
    • Dellaportas, P.1    Forster, J.2
  • 15
    • 0001546180 scopus 로고
    • The chain graph Markov property
    • M Frydenberg 1990 The chain graph Markov property Scand J Stat 17 333 353
    • (1990) Scand J Stat , vol.17 , pp. 333-353
    • Frydenberg, M.1
  • 16
    • 0000900644 scopus 로고
    • Decomposition of maximum likelihood in mixed graphical interaction models
    • M Frydenberg SL Lauritzen 1989 Decomposition of maximum likelihood in mixed graphical interaction models Biometrika 76 539 555
    • (1989) Biometrika , vol.76 , pp. 539-555
    • Frydenberg, M.1    Lauritzen, S.L.2
  • 17
    • 84950437936 scopus 로고
    • Annealing Markov chain Monte Carlo with applications to ancestral inference
    • CJ Geyer EA Thompson 1995 Annealing Markov chain Monte Carlo with applications to ancestral inference J Am Stat Assoc 90 909 920
    • (1995) J Am Stat Assoc , vol.90 , pp. 909-920
    • Geyer, C.J.1    Thompson, E.A.2
  • 19
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • P Giudici R Castelo 2003 Improving Markov chain Monte Carlo model search for data mining Mach Learn 50 127 158
    • (2003) Mach Learn , vol.50 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 20
    • 0001099335 scopus 로고    scopus 로고
    • Decomposable graphical Gaussian model determination
    • P Giudici PJ Green 1999 Decomposable graphical Gaussian model determination Biometrika 86 785 801
    • (1999) Biometrika , vol.86 , pp. 785-801
    • Giudici, P.1    Green, P.J.2
  • 22
    • 33645281928 scopus 로고    scopus 로고
    • A simulated annealing-based method for learning Bayesian networks from statistical data
    • M Janzura J Nielsen 2006 A simulated annealing-based method for learning Bayesian networks from statistical data Int J Intell Syst 21 335 348
    • (2006) Int J Intell Syst , vol.21 , pp. 335-348
    • Janzura, M.1    Nielsen, J.2
  • 23
    • 20144364427 scopus 로고    scopus 로고
    • Experiments in stochastic computation for high-dimensional graphical models
    • B Jones C Carvalho A Dobra 2005 Experiments in stochastic computation for high-dimensional graphical models Stat Sci 20 388 400
    • (2005) Stat Sci , vol.20 , pp. 388-400
    • Jones, B.1    Carvalho, C.2    Dobra, A.3
  • 25
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • M Koivisto K Sood 2004 Exact Bayesian structure discovery in Bayesian networks J Mach Learn Res 5 549 573
    • (2004) J Mach Learn Res , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 26
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • W Lam F Bacchus 1994 Learning Bayesian belief networks: An approach based on the MDL principle Comput Intell 10 269 293
    • (1994) Comput Intell , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 27
    • 0000220791 scopus 로고    scopus 로고
    • Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs
    • D Madigan S Andersson M Perlman C Volinsky 1996 Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs Communtat Theor Meth 25 2493 2519
    • (1996) Communtat Theor Meth , vol.25 , pp. 2493-2519
    • Madigan, D.1    Andersson, S.2    Perlman, M.3    Volinsky, C.4
  • 28
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainly in graphicalmodels using Occam's window
    • D Madigan A Raftery 1994 Model selection and accounting for model uncertainly in graphicalmodels using Occam's window J Am Stat Assoc 89 1535 1546
    • (1994) J Am Stat Assoc , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.2
  • 30
    • 4444384520 scopus 로고    scopus 로고
    • A genetic algorithm for graphical model selection
    • I Poli A Roverato 1998 A genetic algorithm for graphical model selection J Italian Stat Soc 2 197 208
    • (1998) J Italian Stat Soc , vol.2 , pp. 197-208
    • Poli, I.1    Roverato, A.2
  • 33
    • 33745306116 scopus 로고    scopus 로고
    • A graphical representation of equivalence classes of AMP chain graphs
    • A Roverato M Studený 2006 A graphical representation of equivalence classes of AMP chain graphs J Mach Learn Res 7 1045 1078
    • (2006) J Mach Learn Res , vol.7 , pp. 1045-1078
    • Roverato, A.1    Studený, M.2
  • 34
    • 0041486578 scopus 로고    scopus 로고
    • Learning causal networks from data: A survey and a new algorithm to learn possibilistic causal networks from data.
    • R Sanguesa U Cortes 1997 Learning causal networks from data: a survey and a new algorithm to learn possibilistic causal networks from data. AI Commun 4 1 31
    • (1997) AI Commun , vol.4 , pp. 1-31
    • Sanguesa, R.1    Cortes, U.2
  • 36
    • 0002871673 scopus 로고    scopus 로고
    • Bayesian networks from the point of view of chain graphs
    • Uncertainty in Artificial Intelligence Morgan Kaufmann, San Francisco
    • Studený M (1998) Bayesian networks from the point of view of chain graphs. Uncertainty in Artificial Intelligence: In: proceedings of the twelfth conference. Morgan Kaufmann, San Francisco, pp 496-503
    • (1998) Proceedings of the Twelfth Conference , pp. 496-503
    • Studený, M.1
  • 37
    • 24944542062 scopus 로고
    • Some results about decomposable (or markov-type) models for multidimensional contingency tables: Distribution of marginals and partitioning of tests
    • R Sundberg 1975 Some results about decomposable (or markov-type) models for multidimensional contingency tables: distribution of marginals and partitioning of tests Scand J Stat 2 771 779
    • (1975) Scand J Stat , vol.2 , pp. 771-779
    • Sundberg, R.1
  • 38
    • 0008564212 scopus 로고    scopus 로고
    • Learning Bayesian belief networks based on the minimum description length principle
    • Morgan Kaufmann, San Francisco
    • Suzuki J (1996) Learning Bayesian belief networks based on the minimum description length principle. In: International Conference Machine on Learning, Morgan Kaufmann, San Francisco, pp 462-470
    • (1996) International Conference Machine on Learning , pp. 462-470
    • Suzuki, J.1
  • 39
    • 33750580550 scopus 로고    scopus 로고
    • On strong consistency of model selection in classification
    • J Suzuki 2006 On strong consistency of model selection in classification IEEE Trans Inform Theory 52 4767 4774
    • (2006) IEEE Trans Inform Theory , vol.52 , pp. 4767-4774
    • Suzuki, J.1
  • 42
    • 0010402046 scopus 로고    scopus 로고
    • A graphical characterization of the largest chain graphs
    • M Volf M Studený 1999 A graphical characterization of the largest chain graphs Int J Approx Reason 20 209 236
    • (1999) Int J Approx Reason , vol.20 , pp. 209-236
    • Volf, M.1    Studený, M.2
  • 43
    • 26444486023 scopus 로고    scopus 로고
    • Efficient estimation and model selection in large graphical models
    • D Wedelin 1996 Efficient estimation and model selection in large graphical models Stat Comput 6 313 323
    • (1996) Stat Comput , vol.6 , pp. 313-323
    • Wedelin, D.1
  • 45
    • 3843149220 scopus 로고    scopus 로고
    • Efficient estimation of covariance selection models
    • F Wong C Carter R Kohn 2003 Efficient estimation of covariance selection models Biometrika 90 809 830
    • (2003) Biometrika , vol.90 , pp. 809-830
    • Wong, F.1    Carter, C.2    Kohn, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.