메뉴 건너뛰기




Volumn 33, Issue 11, 2011, Pages 2160-2173

Bayesian estimation of beta mixture models with variational inference

Author keywords

Bayesian estimation; beta distribution; factorized approximation; maximum likelihood estimation; mixture modeling; variational inference

Indexed keywords

BAYESIAN ESTIMATIONS; BETA DISTRIBUTIONS; FACTORIZED APPROXIMATION; MIXTURE MODELING; VARIATIONAL INFERENCE;

EID: 80053127168     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2011.63     Document Type: Article
Times cited : (208)

References (47)
  • 5
    • 0040237335 scopus 로고
    • Maximum likelihood estimation of the parameters of the beta distribution from smallest order statistics
    • R. Gnanadesikan, R.S. Pinkham, and L.P. Hughes, "Maximum Likelihood Estimation of the Parameters of the Beta Distribution from Smallest Order Statistics," Technometrics, vol. 9, pp. 607-620, 1967.
    • (1967) Technometrics , vol.9 , pp. 607-620
    • Gnanadesikan, R.1    Pinkham, R.S.2    Hughes, L.P.3
  • 7
    • 0000542131 scopus 로고
    • Multivariate beta distribution and a test for multi-variate normality
    • B. Wagle, "Multivariate Beta Distribution and a Test for Multi-variate Normality," J. Royal Statistical Soc. Series B (Methodological), vol. 30, pp. 511-516, 1968.
    • (1968) J. Royal Statistical Soc. Series B (Methodological) , vol.30 , pp. 511-516
    • Wagle, B.1
  • 8
    • 0037405514 scopus 로고    scopus 로고
    • A bivariate beta distribution
    • DOI 10.1016/S0167-7152(03)00048-8, PII S0167715203000488
    • I. Olkin and R. Liu, "A Bivariate Beta Distribution," Statistics and Probability Letters, vol. 62, pp. 407-412, 2003. (Pubitemid 36439419)
    • (2003) Statistics and Probability Letters , vol.62 , Issue.4 , pp. 407-412
    • Olkin, I.1    Liu, R.2
  • 10
    • 33646682404 scopus 로고    scopus 로고
    • Practical Bayesian estimation of a finite beta mixture through gibbs sampling and its applications
    • DOI 10.1007/s11222-006-8451-7
    • N. Bouguila, D. Ziou, and E. Monga, "Practical Bayesian Estimation of a Finite Beta Mixture through Gibbs Sampling and Its Applications," Statistics and Computing, vol. 16, pp. 215-225, 2006. (Pubitemid 43742298)
    • (2006) Statistics and Computing , vol.16 , Issue.2 , pp. 215-225
    • Bouguila, N.1    Ziou, D.2    Monga, E.3
  • 11
    • 0028387884 scopus 로고
    • Bayes reliability estimation using multiple sources of prior information: Binomial sam pling
    • Mar.
    • V.P. Savchuk and H.F. Martz, "Bayes Reliability Estimation Using Multiple Sources of Prior Information: Binomial Sam pling," IEEE Trans. Reliability, vol. 43, no. 1, pp. 138-144, Mar. 1994.
    • (1994) IEEE Trans. Reliability , vol.43 , Issue.1 , pp. 138-144
    • Savchuk, V.P.1    Martz, H.F.2
  • 12
    • 0033242828 scopus 로고    scopus 로고
    • A note on bayesian estimation and prediction for the beta-binomial model
    • J.C. Lee and Y.L. Lio, "A Note on Bayesian Estimation and Prediction for the Beta-Binomial Model," J. Statistical Computation and Simulation, vol. 63, pp. 73-91, 1999.
    • (1999) J. Statistical Computation and Simulation , vol.63 , pp. 73-91
    • Lee, J.C.1    Lio, Y.L.2
  • 13
    • 0036288380 scopus 로고    scopus 로고
    • Nearly unbiased maximum likelihood estimation for the beta distribution
    • DOI 10.1080/00949650212144
    • F. Cribari-Neto and K.L.P. Vasconcellos, "Nearly Unbiased Maximum Likelihood Estimation for the Beta Distribution," J. Statistical Computation and Simulation, vol. 72, pp. 107-118, 2002. (Pubitemid 36844176)
    • (2002) Journal of Statistical Computation and Simulation , vol.72 , Issue.2 , pp. 107-118
    • Cribari-Neto, F.1    Vasconcellos, K.L.P.2
  • 17
    • 77951949412 scopus 로고    scopus 로고
    • Beta mixture models and the application to image classification
    • Z. Ma and A. Leijon, "Beta Mixture Models and the Application to Image Classification," Proc. Int'l Conf. Image Processing, 2009.
    • (2009) Proc. Int'l Conf. Image Processing
    • Ma, Z.1    Leijon, A.2
  • 18
    • 84863807861 scopus 로고    scopus 로고
    • Human skin color detection in rgb space with bayesian estimation of beta mixture models
    • Z. Ma and A. Leijon, "Human Skin Color Detection in RGB Space with Bayesian Estimation of Beta Mixture Models," Proc. 18th European Signal Processing Conf., 2010.
    • (2010) Proc. 18th European Signal Processing Conf.
    • Ma, Z.1    Leijon, A.2
  • 19
    • 0034225801 scopus 로고    scopus 로고
    • Vector quantization based on gaussian mixture models
    • July
    • P. Hedelin and J. Skoglund, "Vector Quantization Based on Gaussian Mixture Models," IEEE Trans. Speech and Audio Processing, vol. 8, no. 4, pp. 385-401, July 2000.
    • (2000) IEEE Trans. Speech and Audio Processing , vol.8 , Issue.4 , pp. 385-401
    • Hedelin, P.1    Skoglund, J.2
  • 20
    • 0037228685 scopus 로고    scopus 로고
    • Bounded support gaussian mixture modeling of speech spectra
    • Jan.
    • J. Lindblom and J. Samuelsson, "Bounded Support Gaussian Mixture Modeling of Speech Spectra," IEEE Trans. Speech and Audio Processing, vol. 11, no. 1, pp. 88-99, Jan. 2003.
    • (2003) IEEE Trans. Speech and Audio Processing , vol.11 , Issue.1 , pp. 88-99
    • Lindblom, J.1    Samuelsson, J.2
  • 23
    • 84898964031 scopus 로고    scopus 로고
    • A variational bayesian framework for graphical models
    • MIT Press
    • H. Attias, "A Variational Bayesian Framework for Graphical Models," Advances in Neural Information Processing Systems 12, pp. 209-215, MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 209-215
    • Attias, H.1
  • 24
    • 0036887504 scopus 로고    scopus 로고
    • Bayesian model search for mixture models based on optimizing variational bounds
    • N. Ueda and Z. Ghahramani, "Bayesian Model Search for Mixture Models Based on Optimizing Variational Bounds," Neural Network, vol. 15, pp. 1223-1241, 2002.
    • (2002) Neural Network , vol.15 , pp. 1223-1241
    • Ueda, N.1    Ghahramani, Z.2
  • 25
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • T.S. Jaakkola and M.I. Jordan, "Bayesian Parameter Estimation via Variational Methods," Statistics and Computing, vol. 10, pp. 25-37, 2000.
    • (2000) Statistics and Computing , vol.10 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 26
    • 4043084564 scopus 로고    scopus 로고
    • Tutorial on variational approximation methods
    • M. Opper and D. saad, eds. MIT Press
    • T.S. Jaakkola, "Tutorial on Variational Approximation Methods," Advances in Mean Field Methods, M. Opper and D. saad, eds., pp. 129-159, MIT Press, 2001.
    • (2001) Advances in Mean Field Methods , pp. 129-159
    • Jaakkola, T.S.1
  • 29
    • 79951682891 scopus 로고    scopus 로고
    • technical report, Electrical and Computer Eng. Dept., Univ. of California San Diego
    • J.A. Palmer, "Relative Convexity," technical report, Electrical and Computer Eng. Dept., Univ. of California San Diego, 2003.
    • (2003) Relative Convexity
    • Palmer, J.A.1
  • 30
    • 0000811835 scopus 로고
    • Conjugate priors for exponential families
    • P. Diaconis and D. Ylvisaker, "Conjugate Priors for Exponential Families," The Annals of Statistics, vol. 7, pp. 269-281, 1979.
    • (1979) The Annals of Statistics , vol.7 , pp. 269-281
    • Diaconis, P.1    Ylvisaker, D.2
  • 31
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • DOI 10.1023/A:1007665907178
    • M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul, "An Introduction to Variational Methods for Graphical Models," Machine Learning, vol. 37, no. 2, pp. 183-233, 1999. (Pubitemid 30544678)
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 34
    • 77952563025 scopus 로고    scopus 로고
    • Variational inference for large-scale models of discrete choice
    • M. Braun and J. McAuliffe, "Variational Inference for Large-Scale Models of Discrete Choice," J. Am. Statistical Assoc., vol. 105, pp. 324-335, 2010.
    • (2010) J. Am. Statistical Assoc. , vol.105 , pp. 324-335
    • Braun, M.1    McAuliffe, J.2
  • 39
    • 84950934893 scopus 로고
    • Bayes factors
    • R.E. Kass and A.E. Raftery, "Bayes Factors," J. Am. Statistical Assoc., vol. 90, no. 430, pp. 773-795, http://www.jstor.org/stable/2291091, 1995.
    • (1995) J. Am. Statistical Assoc. , vol.90 , Issue.430 , pp. 773-795
    • Kass, R.E.1    Raftery, A.E.2
  • 40
    • 0036165170 scopus 로고    scopus 로고
    • Statistical color models with application to skin detection
    • DOI 10.1023/A:1013200319198
    • M.J. Jones and J.M. Rehg, "Statistical Color Models with Application to Skin Detection," Int'l J. Computer Vision, vol. 46, no. 1, pp. 81-96, 2002. (Pubitemid 34138494)
    • (2002) International Journal of Computer Vision , vol.46 , Issue.1 , pp. 81-96
    • Jones, M.J.1    Rehg, J.M.2
  • 41
    • 33750932530 scopus 로고    scopus 로고
    • A comparative assessment of three approaches to pixel-level human skin-detection
    • J. Brand and J.S. Mason, "A Comparative Assessment of Three Approaches to Pixel-Level Human Skin-Detection," Proc. IEEE Int'l Conf. Pattern Recognition, vol. 1, pp. 1056-1059, 2000.
    • (2000) Proc. IEEE Int'l Conf. Pattern Recognition , vol.1 , pp. 1056-1059
    • Brand, J.1    Mason, J.S.2
  • 46
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett, "An Introduction to ROC analysis," Pattern Recognition Letterd, vol. 27, no. 8, pp. 861-874, 2006.
    • (2006) Pattern Recognition Letterd , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.