메뉴 건너뛰기




Volumn 11, Issue 19, 2011, Pages 3818-3825

Transferring network topological knowledge for predicting protein-protein interactions

Author keywords

Bioinformatics; Collective matrix factorization; Protein protein interactions; Transfer learning

Indexed keywords

AREA UNDER THE CURVE; ARTICLE; BIOINFORMATICS; HELICOBACTER PYLORI; K NEAREST NEIGHBOR; MACHINE LEARNING; PRIORITY JOURNAL; PROTEIN ANALYSIS; PROTEIN PROTEIN INTERACTION; PROTEIN STRUCTURE; PROTEOMICS; RECEIVER OPERATING CHARACTERISTIC; SUPPORT VECTOR MACHINE;

EID: 80053022680     PISSN: 16159853     EISSN: 16159861     Source Type: Journal    
DOI: 10.1002/pmic.201100146     Document Type: Article
Times cited : (6)

References (34)
  • 1
    • 33745004625 scopus 로고    scopus 로고
    • Computational approaches for predicting protein-protein interactions: a survey
    • Yu, J., Fotouhi, F., Computational approaches for predicting protein-protein interactions: a survey. J. Med. Syst. 2006, 30, 39-44.
    • (2006) J. Med. Syst. , vol.30 , pp. 39-44
    • Yu, J.1    Fotouhi, F.2
  • 2
    • 0035212065 scopus 로고    scopus 로고
    • Is there a bias in proteome research?
    • Mrowka, R., Patzak, A., Herzel, H., Is there a bias in proteome research? Genome Res. 2001, 11, 1971-1973.
    • (2001) Genome Res. , vol.11 , pp. 1971-1973
    • Mrowka, R.1    Patzak, A.2    Herzel, H.3
  • 3
    • 68749101181 scopus 로고    scopus 로고
    • Method for prediction of protein-protein interactions in yeast using genomics/proteomics information and feature selection. Proceedings of the 10th International Work - Conference on Artificial Neural Networks: Part I: Bio-inspired Systems: Computational and Ambient Intelligence
    • Urquiza, J. M., Rojas, I., Pomares, H., Florido J. P. et al., Method for prediction of protein-protein interactions in yeast using genomics/proteomics information and feature selection. Proceedings of the 10th International Work - Conference on Artificial Neural Networks: Part I: Bio-inspired Systems: Computational and Ambient Intelligence, 2009, 853-860.
    • (2009) , pp. 853-860
    • Urquiza, J.M.1    Rojas, I.2    Pomares, H.3    Florido, J.P.4
  • 4
    • 65449121541 scopus 로고    scopus 로고
    • Relational learning via collective matrix factorization. Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • Singh, A. P., Gordon, G. J., Relational learning via collective matrix factorization. Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, 650-658.
    • (2008) , pp. 650-658
    • Singh, A.P.1    Gordon, G.J.2
  • 5
    • 0142210290 scopus 로고    scopus 로고
    • Learning to predict protein-protein interactions from protein sequences
    • Gomez, S., Noble, W., Rzhetsky, A., Learning to predict protein-protein interactions from protein sequences. Bioinformatics 2003, 19, 1875-1881.
    • (2003) Bioinformatics , vol.19 , pp. 1875-1881
    • Gomez, S.1    Noble, W.2    Rzhetsky, A.3
  • 6
    • 0036799752 scopus 로고    scopus 로고
    • Inferring domain-domain interactions from protein-protein interactions
    • Deng, M., Mehta, S., Sun, F., Chen, T., Inferring domain-domain interactions from protein-protein interactions. Genome Res. 2002, 12, 1540-1548.
    • (2002) Genome Res. , vol.12 , pp. 1540-1548
    • Deng, M.1    Mehta, S.2    Sun, F.3    Chen, T.4
  • 8
    • 41849115573 scopus 로고    scopus 로고
    • Insite: a computational method for identifying protein-protein interaction binding sites on a proteome-wide scale
    • Wang, H., Segal, E., Ben-Hur, A., Li, Q. et al., Insite: a computational method for identifying protein-protein interaction binding sites on a proteome-wide scale. Genome Biol. 2007, 8, 1-18.
    • (2007) Genome Biol. , vol.8 , pp. 1-18
    • Wang, H.1    Segal, E.2    Ben-Hur, A.3    Li, Q.4
  • 9
    • 34047104592 scopus 로고    scopus 로고
    • Protein-protein interaction site prediction based on conditional random fields
    • Li, M., Lin, L., Wang, X., Liu, T., Protein-protein interaction site prediction based on conditional random fields. Bioinformatics 2007, 23, 597-604.
    • (2007) Bioinformatics , vol.23 , pp. 597-604
    • Li, M.1    Lin, L.2    Wang, X.3    Liu, T.4
  • 10
    • 41349114023 scopus 로고    scopus 로고
    • A comprehensive assessment of sequence-based and template-based methods for protein contact prediction
    • Wu, S., Zhang, Y., A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformatics 2008, 24, 24-931.
    • (2008) Bioinformatics , vol.24 , pp. 24-931
    • Wu, S.1    Zhang, Y.2
  • 11
    • 0035023445 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from primary structure
    • Bock, J., Gough, D., Predicting protein-protein interactions from primary structure. Bioinformatics 2001, 17, 455-460.
    • (2001) Bioinformatics , vol.17 , pp. 455-460
    • Bock, J.1    Gough, D.2
  • 12
    • 24044500970 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships
    • Espadaler, J., Romero-Isart, O., Jackson, R. M., Oliva, B., Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships. Bioinformatics 2005, 21, 3360-3368.
    • (2005) Bioinformatics , vol.21 , pp. 3360-3368
    • Espadaler, J.1    Romero-Isart, O.2    Jackson, R.M.3    Oliva, B.4
  • 13
    • 0037161731 scopus 로고    scopus 로고
    • Comparative assessment of large-scale data sets of protein-protein interactions
    • von Mering, C., Krause, R., Snel, B., Cornell, M. et al., Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002, 417, 399-403.
    • (2002) Nature , vol.417 , pp. 399-403
    • von Mering, C.1    Krause, R.2    Snel, B.3    Cornell, M.4
  • 14
    • 42149163727 scopus 로고    scopus 로고
    • A mixture of feature experts approach for protein-protein interaction prediction
    • Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z., A mixture of feature experts approach for protein-protein interaction prediction. BMC Bioinformatics 2007, 8, 6.
    • (2007) BMC Bioinformatics , vol.8 , pp. 6
    • Qi, Y.1    Klein-Seetharaman, J.2    Bar-Joseph, Z.3
  • 15
    • 0035710816 scopus 로고    scopus 로고
    • Synthetic cell biology
    • Arkin, A., Synthetic cell biology. Curr. Opin. Biotech. 2001, 12, 638-644.
    • (2001) Curr. Opin. Biotech. , vol.12 , pp. 638-644
    • Arkin, A.1
  • 16
    • 34247586171 scopus 로고    scopus 로고
    • Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners
    • Shoemaker, B., Panchenko, A., Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 2007, 3, e43.
    • (2007) PLoS Comput. Biol. , vol.3
    • Shoemaker, B.1    Panchenko, A.2
  • 17
    • 0035211290 scopus 로고    scopus 로고
    • Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs"
    • Matthews, L. R., Vaglio, P., Reboul, J., Ge, H. et al., Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs". Genome Res. 2001, 11, 2120-2126.
    • (2001) Genome Res. , vol.11 , pp. 2120-2126
    • Matthews, L.R.1    Vaglio, P.2    Reboul, J.3    Ge, H.4
  • 18
    • 0035224503 scopus 로고    scopus 로고
    • Protein-protein interaction map inference using interacting domain profile pairs
    • Wojcik, J. J., Schchter, V., Protein-protein interaction map inference using interacting domain profile pairs. Bioinformatics 2001, 17, 296-305.
    • (2001) Bioinformatics , vol.17 , pp. 296-305
    • Wojcik, J.J.1    Schchter, V.2
  • 19
    • 77956500367 scopus 로고    scopus 로고
    • Transfer learning for collective link prediction in multiple heterogeneous domains. Proceedings of 27th International Conference on Machine Learning
    • Cao, B., Liu, N., Yang, Q., Transfer learning for collective link prediction in multiple heterogeneous domains. Proceedings of 27th International Conference on Machine Learning, 2010, 159-166.
    • (2010) , pp. 159-166
    • Cao, B.1    Liu, N.2    Yang, Q.3
  • 20
    • 77958538978 scopus 로고    scopus 로고
    • Transfer learning in collaborative filtering for sparsity reduction. Proceedings of the 24th AAAI Conference on Artificial Intelligence
    • Pan, W., Xiang, E., Liu, N., Yang, Q., Transfer learning in collaborative filtering for sparsity reduction. Proceedings of the 24th AAAI Conference on Artificial Intelligence, 2010, 230-235.
    • (2010) , pp. 230-235
    • Pan, W.1    Xiang, E.2    Liu, N.3    Yang, Q.4
  • 21
    • 77951196813 scopus 로고    scopus 로고
    • Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction. Proceedings of the Twenty-first International Joint Conference on Artificial Intelligence
    • Li, B., Yang, Q., Xue, X., Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction. Proceedings of the Twenty-first International Joint Conference on Artificial Intelligence, 2009, 2052-2057.
    • (2009) , pp. 2052-2057
    • Li, B.1    Yang, Q.2    Xue, X.3
  • 22
    • 84899006908 scopus 로고    scopus 로고
    • Learning with local and global consistency
    • Thrun, S., Saul, L. K., Schölkopf, B., Eds), MIT Press, Cambridge, MA, USA.
    • Zhou, D., Bousquet, O., Lal, T. N., Weston, J. et al., Learning with local and global consistency. In: Thrun, S., Saul, L. K., Schölkopf, B., (Eds), Advances in Neural Information Processing Systems, vol. 16, MIT Press, Cambridge, MA, USA 2004, pp. 321-328.
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 321-328
    • Zhou, D.1    Bousquet, O.2    Lal, T.N.3    Weston, J.4
  • 23
    • 70449341660 scopus 로고    scopus 로고
    • Simultaneous inference of biological networks of multiple species from genome-wide data and evolutionary information: a semi-supervised approach
    • Kashima, H., Yamanishi, Y., Kato, T., Sugiyama, M. et al., Simultaneous inference of biological networks of multiple species from genome-wide data and evolutionary information: a semi-supervised approach. Bioinformatics 2009, 5, 2962-2968.
    • (2009) Bioinformatics , vol.5 , pp. 2962-2968
    • Kashima, H.1    Yamanishi, Y.2    Kato, T.3    Sugiyama, M.4
  • 24
    • 56049086197 scopus 로고    scopus 로고
    • A unified view of matrix factorization models. Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases - Part II, 5212
    • Singh A. P., Gordon, G. J., A unified view of matrix factorization models. Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases - Part II, 2008, 5212, 358-373.
    • (2008) , pp. 358-373
    • Singh, A.P.1    Gordon, G.J.2
  • 25
    • 51349087811 scopus 로고    scopus 로고
    • Global alignment of multiple protein interaction networks with application to functional orthology detection
    • Singh, R., Xu, J., Berger, B., Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc. Natl. Acad. Sci. USA 2008, 105, 12763-12768.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 12763-12768
    • Singh, R.1    Xu, J.2    Berger, B.3
  • 26
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • Smith, T., Waterman, M., Identification of common molecular subsequences. J. Mol. Biol. 1981, 147, 95-197.
    • (1981) J. Mol. Biol. , vol.147 , pp. 95-197
    • Smith, T.1    Waterman, M.2
  • 27
    • 0037249217 scopus 로고    scopus 로고
    • Whole-proteome interaction mining
    • Bock, J., Gough, D., Whole-proteome interaction mining. Bioinformatics 2003, 19, 125-135.
    • (2003) Bioinformatics , vol.19 , pp. 125-135
    • Bock, J.1    Gough, D.2
  • 28
    • 13444262436 scopus 로고    scopus 로고
    • Predicting protein-protein interactions using signature products
    • Martin, S., Roe, D., Faulon, J. L., Predicting protein-protein interactions using signature products. Bioinformatics 2005, 21, 218-226.
    • (2005) Bioinformatics , vol.21 , pp. 218-226
    • Martin, S.1    Roe, D.2    Faulon, J.L.3
  • 29
    • 24144482298 scopus 로고    scopus 로고
    • Fusion of classifiers for predicting protein-protein interactions
    • Nanni, L., Fusion of classifiers for predicting protein-protein interactions. Neurocomputing 2005, 68, 289-296.
    • (2005) Neurocomputing , vol.68 , pp. 289-296
    • Nanni, L.1
  • 30
    • 27844440887 scopus 로고    scopus 로고
    • Hyperplanes for predicting protein-protein interactions
    • Nanni, L., Hyperplanes for predicting protein-protein interactions. Neurocomputing 2005, 69, 257-263.
    • (2005) Neurocomputing , vol.69 , pp. 257-263
    • Nanni, L.1
  • 31
    • 33646871614 scopus 로고    scopus 로고
    • An ensemble of k-local hyperplanes for predicting protein-protein interactions
    • Nanni, L., Lumini, A., An ensemble of k-local hyperplanes for predicting protein-protein interactions. Bioinformatics 2006, 22, 1207-1210.
    • (2006) Bioinformatics , vol.22 , pp. 1207-1210
    • Nanni, L.1    Lumini, A.2
  • 32
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • Fawcett, T., An introduction to roc analysis. Pattern Recog. Lett. 2006, 27, 861-874.
    • (2006) Pattern Recog. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 33
    • 62449187253 scopus 로고    scopus 로고
    • Active learning to maximize area under the roc curve. Proceedings of the 6th International Conference on Data Mining
    • Culver, M. G., Active learning to maximize area under the roc curve. Proceedings of the 6th International Conference on Data Mining, 2006, 149-158.
    • (2006) , pp. 149-158
    • Culver, M.G.1
  • 34
    • 60349114820 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions based on pseaa composition and hybrid feature selection
    • Liu, L., Cai, Y., Lu, W., Feng, K. et al., Prediction of protein-protein interactions based on pseaa composition and hybrid feature selection. Biochem. Biophys. Res. Commun. 2009, 380, 318-322.
    • (2009) Biochem. Biophys. Res. Commun. , vol.380 , pp. 318-322
    • Liu, L.1    Cai, Y.2    Lu, W.3    Feng, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.