메뉴 건너뛰기




Volumn 207, Issue , 2006, Pages 137-165

Embedded methods

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34047125755     PISSN: 14349922     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-35488-8_6     Document Type: Article
Times cited : (251)

References (49)
  • 1
    • 0004493166 scopus 로고    scopus 로고
    • On the Approximability of Minimizing non zero Variables or Unsatisfied Relations in Linear Systems
    • E. Amaldi and V. Kann. On the Approximability of Minimizing non zero Variables or Unsatisfied Relations in Linear Systems. Theoretical Computer Science, 209: 237-260, 1998.
    • (1998) Theoretical Computer Science , vol.209 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 4
    • 0002709342 scopus 로고    scopus 로고
    • Feature Selection via Concave Minimization and Support Vector Machines
    • Morgan Kaufmann, San Francisco, CA
    • P. S. Bradley and O. L. Mangasarian. Feature Selection via Concave Minimization and Support Vector Machines. In Proc. 15th International Conf. on Alachine Learning, pages 82-90. Morgan Kaufmann, San Francisco, CA, 1998.
    • (1998) Proc. 15th International Conf. on Alachine Learning , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 7
    • 0036161011 scopus 로고    scopus 로고
    • Choosing Multiple Parameters for Support Vector Machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing Multiple Parameters for Support Vector Machines. Machine Learning, 46(1-3):131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 8
    • 0024771664 scopus 로고
    • Orthogonal Least Squares and Their Application to Non-linear System Identification
    • S. Chen, S.A. Billings, and W. Luo. Orthogonal Least Squares and Their Application to Non-linear System Identification. International Journal of Control, 50:1873-1896, 1989.
    • (1989) International Journal of Control , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 12
    • 33745321449 scopus 로고    scopus 로고
    • A Feature Selection Newton Method for Support Vector Machine Classification
    • G. Fung and O. L. Mangasarian. A Feature Selection Newton Method for Support Vector Machine Classification. Computational Optimization and Aplications, pages 1-18, 2003.
    • (2003) Computational Optimization and Aplications , pp. 1-18
    • Fung, G.1    Mangasarian, O.L.2
  • 13
    • 34047096182 scopus 로고    scopus 로고
    • Fast Feature Selection from Microarray Expression Data via Multiplicative Large Margin Algorithms
    • Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, MIT Press, Cambridge, MA
    • C. Gentile. Fast Feature Selection from Microarray Expression Data via Multiplicative Large Margin Algorithms. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
    • (2004) Advances in Neural Information Processing Systems 16
    • Gentile, C.1
  • 14
    • 84899001870 scopus 로고    scopus 로고
    • Adaptive Scaling for Feature Selection in SVMs
    • S. Thrun S. Becker and K. Obermayer, editors, Cambridge, MA, USA, MIT Press
    • Y. Grandvalet and S. Canu. Adaptive Scaling for Feature Selection in SVMs. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information Processing Systems, volume 15, Cambridge, MA, USA, 2003. MIT Press.
    • (2003) Advances in Neural Information Processing Systems , vol.15
    • Grandvalet, Y.1    Canu, S.2
  • 16
    • 0036161259 scopus 로고    scopus 로고
    • Gene Selection for Cancer Classification using Support Vector Machines
    • January
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 40:389-422, January 2002.
    • (2002) Machine Learning , vol.40 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 17
    • 22944456331 scopus 로고    scopus 로고
    • Gene Selection for Microarray Data
    • B. Schölkopf, K. Tsuda, and J.-P. Vert, editors, MIT Press, Cambridge, Massachusetts
    • S. Hochreiter and K. Obermayer. Gene Selection for Microarray Data. In B. Schölkopf, K. Tsuda, and J.-P. Vert, editors, Kernel Methods in Computational Biology. MIT Press, Cambridge, Massachusetts, 2004.
    • (2004) Kernel Methods in Computational Biology
    • Hochreiter, S.1    Obermayer, K.2
  • 18
    • 0008312225 scopus 로고    scopus 로고
    • Maximum Entropy Discrimination
    • Technical Report AITR-1668, Massachusetts Institute of Technology, Artificial Intelligence Laboratory
    • T. Jaakkola, M. Meila, and T. Jebara. Maximum Entropy Discrimination. Technical Report AITR-1668, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1999.
    • (1999)
    • Jaakkola, T.1    Meila, M.2    Jebara, T.3
  • 21
    • 84969342575 scopus 로고
    • The Perceptron Algorithm vs. Winnow: Linear vs. Logarithmic Mistake Bounds when few Input Variables are Relevant
    • New York, USA, ACM Press
    • J. Kivinen and M. Warmuth. The Perceptron Algorithm vs. Winnow: Linear vs. Logarithmic Mistake Bounds when few Input Variables are Relevant. In Proceedings of the eighth annual conference on Computational learning theory, pages 289-296, New York, USA, 1995. ACM Press.
    • (1995) Proceedings of the eighth annual conference on Computational learning theory , pp. 289-296
    • Kivinen, J.1    Warmuth, M.2
  • 22
    • 22944474245 scopus 로고    scopus 로고
    • Gene Expression Analysis: Joint Feature Selection and Classifier Design
    • B. Schölkopf, K. Tsuda, and J.-P. Vert, editors, MIT Press, Cambridge, MA
    • B. Krishnapuram, L. Carin, and A. Hartemink. Gene Expression Analysis: Joint Feature Selection and Classifier Design. In B. Schölkopf, K. Tsuda, and J.-P. Vert, editors, Kernel Methods in Computational Biology. MIT Press, Cambridge, MA, 2004.
    • (2004) Kernel Methods in Computational Biology
    • Krishnapuram, B.1    Carin, L.2    Hartemink, A.3
  • 25
    • 0013125561 scopus 로고    scopus 로고
    • Feature Selection with Neural Networks
    • P. Leray and P. Gallinari. Feature Selection with Neural Networks. Behaviormetrika, 26(1), 1999.
    • (1999) Behaviormetrika , vol.26 , Issue.1
    • Leray, P.1    Gallinari, P.2
  • 26
    • 0036772522 scopus 로고    scopus 로고
    • Bayesian Automatic Relevance Determination Algorithms for Classifying Gene Expression Data
    • Y. Li, C. Campbell, and M. Tipping. Bayesian Automatic Relevance Determination Algorithms for Classifying Gene Expression Data. Bioinformatics, 18(10):1332-1339, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.10 , pp. 1332-1339
    • Li, Y.1    Campbell, C.2    Tipping, M.3
  • 27
    • 0003281852 scopus 로고    scopus 로고
    • On the Estimation of Characters Obtained in Statistical Procedure of Recognition
    • A. Luntz and V. Brailovsky. On the Estimation of Characters Obtained in Statistical Procedure of Recognition. Technicheskaya Kibernetica, 1996.
    • (1996) Technicheskaya Kibernetica
    • Luntz, A.1    Brailovsky, V.2
  • 28
    • 0028698662 scopus 로고
    • Bayesian non-linear modelling for the prediction competition
    • D. J. C. MacKay. Bayesian non-linear modelling for the prediction competition. ASHRAE Transactions, 100(2):1053-1062, 1994.
    • (1994) ASHRAE Transactions , vol.100 , Issue.2 , pp. 1053-1062
    • MacKay, D.J.C.1
  • 30
    • 0000068822 scopus 로고    scopus 로고
    • A Mathematical Programming Approach to the Kernel Fisher Algorithm
    • S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Cambridge, MA, USA, MIT Press
    • S. Mika, G. Rätsch, and K.-R. Müller. A Mathematical Programming Approach to the Kernel Fisher Algorithm. In S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems, pages 591-597, Cambridge, MA, USA, 2000. MIT Press.
    • (2000) Advances in Neural Information Processing Systems , pp. 591-597
    • Mika, S.1    Rätsch, G.2    Müller, K.-R.3
  • 31
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian Learning for Neural Networks
    • of, Springer
    • R. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture Notes in Statistics. Springer, 1996.
    • (1996) Lecture Notes in Statistics , vol.118
    • Neal, R.1
  • 32
    • 84898974506 scopus 로고    scopus 로고
    • A feature selection algorithm based on the global minimization of a generalization error bound
    • D. Peleg and R. Meir. A feature selection algorithm based on the global minimization of a generalization error bound. In NIPS 18, 2004.
    • (2004) NIPS 18
    • Peleg, D.1    Meir, R.2
  • 33
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: Fast, Incremental Feature Selection by Gradient Descent in'Function Space
    • S. Perkins, K. Lacker, and J. Theiler. Grafting: Fast, Incremental Feature Selection by Gradient Descent in'Function Space. Journal of Machine Learning Research, 3:1333-1356, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1333-1356
    • Perkins, S.1    Lacker, K.2    Theiler, J.3
  • 35
    • 33744584654 scopus 로고
    • Induction of Decision Trees
    • J.R. Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81-106, 1986.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 37
    • 0346825283 scopus 로고    scopus 로고
    • MLPs (Mono-Layer Polynomials and Multi-Layer Perceptrons) for Nonlinear Modeling
    • I. Rivals and L. Personnaz. MLPs (Mono-Layer Polynomials and Multi-Layer Perceptrons) for Nonlinear Modeling. Journal of Machine Learning Research, 3: 1383-1398, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1383-1398
    • Rivals, I.1    Personnaz, L.2
  • 39
    • 84898947199 scopus 로고    scopus 로고
    • Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers
    • S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Cambridge, MA, USA, MIT Press. Spider. Machine Learning Toolbox
    • M. Seeger. Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers. In S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems, volume 12, Cambridge, MA, USA, 2000. MIT Press. Spider. Machine Learning Toolbox http://www.kyb.tuebingen.mpg.de/bs/ people/spider/, 2004.
    • (2000) Advances in Neural Information Processing Systems , vol.12
    • Seeger, M.1
  • 42
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • M. E. Tipping. Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1:211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 43
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on Error Expectation for Support Vector Machines
    • V. Vapnik and O. Chapelle. Bounds on Error Expectation for Support Vector Machines. Neural Computation, 12(9), 2000.
    • (2000) Neural Computation , vol.12 , Issue.9
    • Vapnik, V.1    Chapelle, O.2
  • 48
    • 0002692783 scopus 로고
    • Soft modeling by latent variables; the nonlinear iterative partial least squares approach
    • J. Gani, editor, London, Academic Press
    • H. Wold. Soft modeling by latent variables; the nonlinear iterative partial least squares approach. In J. Gani, editor, Perspectives in Probability and Statistics, Papers in Honours of M.S. Bartlett, London, 1975. Academic Press.
    • (1975) Perspectives in Probability and Statistics, Papers in Honours of M.S. Bartlett
    • Wold, H.1
  • 49
    • 15944363312 scopus 로고    scopus 로고
    • Classification of Gene Microarrays by Penalized Logistic Regression
    • J. Zhu and T. Hastie. Classification of Gene Microarrays by Penalized Logistic Regression. Bio statistics, 5(3):427-443, 2003.
    • (2003) Bio statistics , vol.5 , Issue.3 , pp. 427-443
    • Zhu, J.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.