-
1
-
-
84872255037
-
-
Netflix prize. http://www.netflixprize.com/.
-
Netflix Prize
-
-
-
2
-
-
77956215890
-
Estimating rates of rare events with multiple hierarchies through scalable log-linear models
-
New York, NY, USA, ACM
-
D. Agarwal, R. Agrawal, R. Khanna, and N. Kota. Estimating rates of rare events with multiple hierarchies through scalable log-linear models. In KDD'10, pages 213-222, New York, NY, USA, 2010. ACM.
-
(2010)
KDD'10
, pp. 213-222
-
-
Agarwal, D.1
Agrawal, R.2
Khanna, R.3
Kota, N.4
-
3
-
-
36849008678
-
Estimating rates of rare events at multiple resolutions
-
DOI 10.1145/1281192.1281198, KDD-2007: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
D. Agarwal, A. Z. Broder, D. Chakrabarti, D. Diklic, V. Josifovski, and M. Sayyadian. Estimating rates of rare events at multiple resolutions. In KDD'07, pages 16-25, New York, NY, USA, 2007. ACM. (Pubitemid 350229189)
-
(2007)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 16-25
-
-
Agarwal, D.1
Broder, A.Z.2
Chakrabarti, D.3
Diklic, D.4
Josifovski, V.5
Sayyadian, M.6
-
4
-
-
70350664430
-
Regression-based latent factor models
-
New York, NY, USA, ACM
-
D. Agarwal and B.-C. Chen. Regression-based latent factor models. In KDD'09, pages 19-28, New York, NY, USA, 2009. ACM.
-
(2009)
KDD'09
, pp. 19-28
-
-
Agarwal, D.1
Chen, B.-C.2
-
5
-
-
77950884255
-
Spatio-temporal models for estimating click-through rate
-
New York, NY, USA, ACM
-
D. Agarwal, B.-C. Chen, and P. Elango. Spatio-temporal models for estimating click-through rate. In WWW'09, pages 21-30, New York, NY, USA, 2009. ACM.
-
(2009)
WWW'09
, pp. 21-30
-
-
Agarwal, D.1
Chen, B.-C.2
Elango, P.3
-
6
-
-
57349162093
-
Collaborative filtering on skewed datasets
-
New York, NY, USA, ACM
-
S. Banerjee and K. Ramanathan. Collaborative filtering on skewed datasets. In WWW'08, pages 1135-1136, New York, NY, USA, 2008. ACM.
-
(2008)
WWW'08
, pp. 1135-1136
-
-
Banerjee, S.1
Ramanathan, K.2
-
8
-
-
77956543367
-
Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft's Bing search engine
-
T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich. Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft's Bing search engine. In ICML'10, pages 13-20, 2010.
-
(2010)
ICML'10
, pp. 13-20
-
-
Graepel, T.1
Candela, J.Q.2
Borchert, T.3
Herbrich, R.4
-
9
-
-
0003684449
-
The elements of statistical learning
-
Springer New York Inc. New York, NY, USA
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.
-
(2001)
Springer Series in Statistics
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
10
-
-
14944371662
-
Bilinear mixed-effects models for dyadic data
-
DOI 10.1198/016214504000001015
-
P. D. Hoff. Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association, 100:286-295, March 2005. (Pubitemid 40366838)
-
(2005)
Journal of the American Statistical Association
, vol.100
, Issue.469
, pp. 286-295
-
-
Hoff, P.D.1
-
11
-
-
67049164166
-
Collaborative filtering for implicit feedback datasets
-
Washington, DC, USA, IEEE Computer Society
-
Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM'08, pages 263-272, Washington, DC, USA, 2008. IEEE Computer Society.
-
(2008)
ICDM'08
, pp. 263-272
-
-
Hu, Y.1
Koren, Y.2
Volinsky, C.3
-
12
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30-37, 2009.
-
(2009)
IEEE Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.M.2
Volinsky, C.3
-
15
-
-
79951739038
-
A log-linear model with latent features for dyadic prediction
-
A. K. Menon and C. Elkan. A log-linear model with latent features for dyadic prediction. In ICDM, 2010.
-
(2010)
ICDM
-
-
Menon, A.K.1
Elkan, C.2
-
16
-
-
72249096675
-
Recommending new movies: Even a few ratings are more valuable than metadata
-
New York, NY, USA, ACM
-
I. Pilászy and D. Tikk. Recommending new movies: even a few ratings are more valuable than metadata. In RecSys'09, pages 93-100, New York, NY, USA, 2009. ACM.
-
(2009)
RecSys'09
, pp. 93-100
-
-
Pilászy, I.1
Tikk, D.2
-
17
-
-
35348840947
-
Predicting clicks: Estimating the click-through rate for new ads
-
DOI 10.1145/1242572.1242643, 16th International World Wide Web Conference, WWW2007
-
M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: estimating the click-through rate for new ads. In WWW'07, pages 521-530, New York, NY, USA, 2007. ACM. (Pubitemid 47582281)
-
(2007)
16th International World Wide Web Conference, WWW2007
, pp. 521-530
-
-
Richardson, M.1
Dominowska, E.2
Ragno, R.3
-
18
-
-
48349135120
-
Probabilistic matrix factorization
-
R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2007.
-
(2007)
NIPS
-
-
Salakhutdinov, R.1
Mnih, A.2
-
19
-
-
64149121935
-
Scalable collaborative filtering approaches for large recommender systems
-
G. Takács, I. Pilászy, B. Németh, and D. Tikk. Scalable Collaborative Filtering Approaches for Large Recommender Systems. Journal of Machine Learning Research, 10:623-656, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 623-656
-
-
Takács, G.1
Pilászy, I.2
Németh, B.3
Tikk, D.4
-
20
-
-
71149087699
-
Feature hashing for large scale multitask learning
-
K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for large scale multitask learning. In ICML'09, pages 1113-1120, 2009.
-
(2009)
ICML'09
, pp. 1113-1120
-
-
Weinberger, K.1
Dasgupta, A.2
Langford, J.3
Smola, A.4
Attenberg, J.5
-
21
-
-
80052396145
-
Like like alike - Joint friendship and interest propagation in social networks
-
S. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha. Like like alike - joint friendship and interest propagation in social networks. In WWW, 2011.
-
(2011)
WWW
-
-
Yang, S.1
Long, B.2
Smola, A.3
Sadagopan, N.4
Zheng, Z.5
Zha, H.6
-
22
-
-
57349200477
-
On exploiting classification taxonomies in recommender systems
-
C.-N. Ziegler, G. Lausen, and J. A. Konstan. On exploiting classification taxonomies in recommender systems. AI Communications, 21(2-3):97-125, 2008.
-
(2008)
AI Communications
, vol.21
, Issue.2-3
, pp. 97-125
-
-
Ziegler, C.-N.1
Lausen, G.2
Konstan, J.A.3
-
23
-
-
18744362180
-
Taxonomy-driven computation of product recommendations
-
CIKM 2004: Proceedings of the Thirteenth ACM Conference on Information and Knowledge Management
-
C.-N. Ziegler, G. Lausen, and S.-T. Lars. Taxonomy-driven computation of product recommendations. In Proceedings of the thirteenth ACM international conference on Information and knowledge management, CIKM'04, pages 406-415, New York, NY, USA, 2004. ACM. (Pubitemid 40673480)
-
(2004)
International Conference on Information and Knowledge Management, Proceedings
, pp. 406-415
-
-
Ziegler, C.-N.1
Lausen, G.2
Schmidt-Thieme, L.3
|