메뉴 건너뛰기




Volumn , Issue , 2011, Pages 141-149

Response prediction using collaborative filtering with hierarchies and side-information

Author keywords

Collaborative filtering; Hierarchies; Response prediction

Indexed keywords

DATA MINING; FORECASTING; MATRIX ALGEBRA; MATRIX FACTORIZATION;

EID: 80052679175     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020436     Document Type: Conference Paper
Times cited : (147)

References (23)
  • 1
    • 84872255037 scopus 로고    scopus 로고
    • Netflix prize. http://www.netflixprize.com/.
    • Netflix Prize
  • 2
    • 77956215890 scopus 로고    scopus 로고
    • Estimating rates of rare events with multiple hierarchies through scalable log-linear models
    • New York, NY, USA, ACM
    • D. Agarwal, R. Agrawal, R. Khanna, and N. Kota. Estimating rates of rare events with multiple hierarchies through scalable log-linear models. In KDD'10, pages 213-222, New York, NY, USA, 2010. ACM.
    • (2010) KDD'10 , pp. 213-222
    • Agarwal, D.1    Agrawal, R.2    Khanna, R.3    Kota, N.4
  • 4
    • 70350664430 scopus 로고    scopus 로고
    • Regression-based latent factor models
    • New York, NY, USA, ACM
    • D. Agarwal and B.-C. Chen. Regression-based latent factor models. In KDD'09, pages 19-28, New York, NY, USA, 2009. ACM.
    • (2009) KDD'09 , pp. 19-28
    • Agarwal, D.1    Chen, B.-C.2
  • 5
    • 77950884255 scopus 로고    scopus 로고
    • Spatio-temporal models for estimating click-through rate
    • New York, NY, USA, ACM
    • D. Agarwal, B.-C. Chen, and P. Elango. Spatio-temporal models for estimating click-through rate. In WWW'09, pages 21-30, New York, NY, USA, 2009. ACM.
    • (2009) WWW'09 , pp. 21-30
    • Agarwal, D.1    Chen, B.-C.2    Elango, P.3
  • 6
    • 57349162093 scopus 로고    scopus 로고
    • Collaborative filtering on skewed datasets
    • New York, NY, USA, ACM
    • S. Banerjee and K. Ramanathan. Collaborative filtering on skewed datasets. In WWW'08, pages 1135-1136, New York, NY, USA, 2008. ACM.
    • (2008) WWW'08 , pp. 1135-1136
    • Banerjee, S.1    Ramanathan, K.2
  • 8
    • 77956543367 scopus 로고    scopus 로고
    • Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft's Bing search engine
    • T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich. Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft's Bing search engine. In ICML'10, pages 13-20, 2010.
    • (2010) ICML'10 , pp. 13-20
    • Graepel, T.1    Candela, J.Q.2    Borchert, T.3    Herbrich, R.4
  • 10
    • 14944371662 scopus 로고    scopus 로고
    • Bilinear mixed-effects models for dyadic data
    • DOI 10.1198/016214504000001015
    • P. D. Hoff. Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association, 100:286-295, March 2005. (Pubitemid 40366838)
    • (2005) Journal of the American Statistical Association , vol.100 , Issue.469 , pp. 286-295
    • Hoff, P.D.1
  • 11
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Washington, DC, USA, IEEE Computer Society
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM'08, pages 263-272, Washington, DC, USA, 2008. IEEE Computer Society.
    • (2008) ICDM'08 , pp. 263-272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 12
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30-37, 2009.
    • (2009) IEEE Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.M.2    Volinsky, C.3
  • 15
    • 79951739038 scopus 로고    scopus 로고
    • A log-linear model with latent features for dyadic prediction
    • A. K. Menon and C. Elkan. A log-linear model with latent features for dyadic prediction. In ICDM, 2010.
    • (2010) ICDM
    • Menon, A.K.1    Elkan, C.2
  • 16
    • 72249096675 scopus 로고    scopus 로고
    • Recommending new movies: Even a few ratings are more valuable than metadata
    • New York, NY, USA, ACM
    • I. Pilászy and D. Tikk. Recommending new movies: even a few ratings are more valuable than metadata. In RecSys'09, pages 93-100, New York, NY, USA, 2009. ACM.
    • (2009) RecSys'09 , pp. 93-100
    • Pilászy, I.1    Tikk, D.2
  • 17
    • 35348840947 scopus 로고    scopus 로고
    • Predicting clicks: Estimating the click-through rate for new ads
    • DOI 10.1145/1242572.1242643, 16th International World Wide Web Conference, WWW2007
    • M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: estimating the click-through rate for new ads. In WWW'07, pages 521-530, New York, NY, USA, 2007. ACM. (Pubitemid 47582281)
    • (2007) 16th International World Wide Web Conference, WWW2007 , pp. 521-530
    • Richardson, M.1    Dominowska, E.2    Ragno, R.3
  • 18
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2007.
    • (2007) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 21
    • 80052396145 scopus 로고    scopus 로고
    • Like like alike - Joint friendship and interest propagation in social networks
    • S. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha. Like like alike - joint friendship and interest propagation in social networks. In WWW, 2011.
    • (2011) WWW
    • Yang, S.1    Long, B.2    Smola, A.3    Sadagopan, N.4    Zheng, Z.5    Zha, H.6
  • 22
    • 57349200477 scopus 로고    scopus 로고
    • On exploiting classification taxonomies in recommender systems
    • C.-N. Ziegler, G. Lausen, and J. A. Konstan. On exploiting classification taxonomies in recommender systems. AI Communications, 21(2-3):97-125, 2008.
    • (2008) AI Communications , vol.21 , Issue.2-3 , pp. 97-125
    • Ziegler, C.-N.1    Lausen, G.2    Konstan, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.