메뉴 건너뛰기




Volumn , Issue , 2010, Pages 364-373

A log-linear model with latent features for dyadic prediction

Author keywords

Collaborative filtering; Dyadic prediction; Link prediction; Log linear model

Indexed keywords

COLD START PROBLEMS; COLLABORATIVE FILTERING; DYADIC PREDICTION; EXISTING METHOD; LARGE DATASETS; LINK PREDICTION; LOGLINEAR MODEL; PREDICTION TASKS; SELECTION BIAS; SIDE-INFORMATION; UNIQUE IDENTIFIERS;

EID: 79951739038     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2010.148     Document Type: Conference Paper
Times cited : (63)

References (33)
  • 1
    • 58549116699 scopus 로고    scopus 로고
    • Dynamic network model for predicting occurrences of salmonella at food facilities
    • LNCS 5354
    • A. D. Purnamrita Sarkar, Lujie Chen, "Dynamic network model for predicting occurrences of salmonella at food facilities," in BioSecure 2008, vol. LNCS 5354, 2008, pp. 56-63.
    • (2008) BioSecure 2008 , pp. 56-63
    • Purnamrita Sarkar, A.D.1    Chen, L.2
  • 3
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," Computer, vol. 42, no. 8, pp. 30-37, 2009.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 4
    • 36849022613 scopus 로고    scopus 로고
    • Making generative classifiers robust to selection bias
    • A. T. Smith and C. Elkan, "Making generative classifiers robust to selection bias," in KDD, 2007.
    • (2007) KDD
    • Smith, A.T.1    Elkan, C.2
  • 5
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
    • San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
    • B. Zadrozny and C. Elkan, "Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers," in ICML '01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 609-616.
    • (2001) ICML '01 , pp. 609-616
    • Zadrozny, B.1    Elkan, C.2
  • 8
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih, "Probabilistic matrix factorization," in NIPS '07, 2007.
    • (2007) NIPS '07
    • Salakhutdinov, R.1    Mnih, A.2
  • 9
    • 72449152230 scopus 로고    scopus 로고
    • Fast nonparametric matrix factorization for large-scale collaborative filtering
    • New York, NY, USA: ACM
    • K. Yu, S. Zhu, J. Lafferty, and Y. Gong, "Fast nonparametric matrix factorization for large-scale collaborative filtering," in SIGIR '09. New York, NY, USA: ACM, 2009, pp. 211-218.
    • (2009) SIGIR '09 , pp. 211-218
    • Yu, K.1    Zhu, S.2    Lafferty, J.3    Gong, Y.4
  • 11
    • 64149121935 scopus 로고    scopus 로고
    • Scalable collaborative filtering approaches for large recommender systems
    • G. Takács, I. Pilászy, B. Németh, and D. Tikk, "Scalable collaborative filtering approaches for large recommender systems," JMLR, vol. 10, pp. 623-656, 2009.
    • (2009) JMLR , vol.10 , pp. 623-656
    • Takács, G.1    Pilászy, I.2    Németh, B.3    Tikk, D.4
  • 12
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • New York, NY, USA: ACM
    • Y. Koren, "Factorization meets the neighborhood: A multifaceted collaborative filtering model," in KDD '08. New York, NY, USA: ACM, 2008, pp. 426-434.
    • (2008) KDD '08 , pp. 426-434
    • Koren, Y.1
  • 13
    • 34547983260 scopus 로고    scopus 로고
    • Restricted boltzmann machines for collaborative filtering
    • New York, NY, USA: ACM
    • R. Salakhutdinov, A. Mnih, and G. Hinton, "Restricted Boltzmann machines for collaborative filtering," in ICML '07. New York, NY, USA: ACM, 2007, pp. 791-798.
    • (2007) ICML '07 , pp. 791-798
    • Salakhutdinov, R.1    Mnih, A.2    Hinton, G.3
  • 15
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. D. M. Rennie and N. Srebro, "Fast maximum margin matrix factorization for collaborative prediction," in ICML '05.
    • ICML '05
    • Rennie, J.D.M.1    Srebro, N.2
  • 16
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
    • New York, NY, USA: ACM
    • R. Salakhutdinov and A. Mnih, "Bayesian probabilistic matrix factorization using Markov chain Monte Carlo," in ICML '08. New York, NY, USA: ACM, 2008, pp. 880-887.
    • (2008) ICML '08 , pp. 880-887
    • Salakhutdinov, R.1    Mnih, A.2
  • 17
    • 64149107285 scopus 로고    scopus 로고
    • A new approach to collaborative filtering: Operator estimation with spectral regularization
    • J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert, "A new approach to collaborative filtering: Operator estimation with spectral regularization," JMLR, vol. 10, pp. 803-826, 2009.
    • (2009) JMLR , vol.10 , pp. 803-826
    • Abernethy, J.1    Bach, F.2    Evgeniou, T.3    Vert, J.-P.4
  • 18
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted boltzmann machines
    • H. Larochelle and Y. Bengio, "Classification using discriminative restricted Boltzmann machines," in ICML '08, 2008, pp. 536-543.
    • (2008) ICML '08 , pp. 536-543
    • Larochelle, H.1    Bengio, Y.2
  • 19
    • 34948881770 scopus 로고    scopus 로고
    • Latent-dynamic discriminative models for continuous gesture recognition
    • L.-P. Morency, A. Quattoni, and T. Darrell, "Latent-dynamic discriminative models for continuous gesture recognition," in CVPR, 2007.
    • (2007) CVPR
    • Morency, L.-P.1    Quattoni, A.2    Darrell, T.3
  • 20
    • 84872399687 scopus 로고    scopus 로고
    • Multiplicative latent factor models for description and prediction of social networks
    • University of Washington-Seattle, Working Paper no. 54
    • P. D. Hoff, "Multiplicative latent factor models for description and prediction of social networks," Center for Statistics and the Social Sciences, University of Washington-Seattle, Working Paper no. 54, 2006.
    • (2006) Center for Statistics and the Social Sciences
    • Hoff, P.D.1
  • 21
    • 84993783244 scopus 로고    scopus 로고
    • Multinomial logit random effects models
    • J. Hartzel, A. Agresti, and B. Caffo, "Multinomial logit random effects models," Statistical Modelling, vol. 1, pp. 81-102, 2001.
    • (2001) Statistical Modelling , vol.1 , pp. 81-102
    • Hartzel, J.1    Agresti, A.2    Caffo, B.3
  • 22
    • 0002345034 scopus 로고
    • The comparison and evaluation of forecasters
    • M. DeGroot and S. Fienberg, "The comparison and evaluation of forecasters," Statistician, vol. 32, pp. 12-22, 1982.
    • (1982) Statistician , vol.32 , pp. 12-22
    • DeGroot, M.1    Fienberg, S.2
  • 23
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
    • B. Zadrozny and C. Elkan, "Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers," in ICML '01, 2001, pp. 609-616.
    • (2001) ICML '01 , pp. 609-616
    • Zadrozny, B.1    Elkan, C.2
  • 26
    • 84890189500 scopus 로고    scopus 로고
    • Improving maximum margin matrix factorization
    • M. Weimer, A. Karatzoglou, and A. J. Smola, "Improving maximum margin matrix factorization," in ECML/PKDD (1), 2008, p. 14.
    • (2008) ECML/PKDD , Issue.1 , pp. 14
    • Weimer, M.1    Karatzoglou, A.2    Smola, A.J.3
  • 28
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • D. C. Liu and J. Nocedal, "On the limited memory BFGS method for large scale optimization," Math. Program., vol. 45, no. 3, pp. 503-528, 1989. (Pubitemid 20660315)
    • (1989) Mathematical Programming, Series B , vol.45 , Issue.3 , pp. 503-528
    • Liu Dong, C.1    Nocedal Jorge2
  • 29
    • 33645657113 scopus 로고    scopus 로고
    • Improving recommendation lists through topic diversification
    • C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, "Improving recommendation lists through topic diversification," in WWW '05, 2005.
    • (2005) WWW '05
    • Ziegler, C.-N.1    McNee, S.M.2    Konstan, J.A.3    Lausen, G.4
  • 30
    • 77950940282 scopus 로고    scopus 로고
    • fLDA: Matrix factorization through latent dirichlet allocation
    • New York, NY, USA: ACM
    • D. Agarwal and B.-C. Chen, "fLDA: Matrix factorization through latent Dirichlet allocation," in WSDM '10. New York, NY, USA: ACM, 2010, pp. 91-100.
    • (2010) WSDM '10 , pp. 91-100
    • Agarwal, D.1    Chen, B.-C.2
  • 32
    • 79951748683 scopus 로고
    • W. W. Denham, "Alyawarra dataset," http://www1.aiatsis.gov.au/ exhibitions/AlyaWeb/public/about.html, 1971.
    • (1971) Alyawarra Dataset
    • Denham, W.W.1
  • 33
    • 84864028297 scopus 로고    scopus 로고
    • Modeling dyadic data with binary latent factors
    • E. Meeds, Z. Ghahramani, R. Neal, and S. Roweis, "Modeling dyadic data with binary latent factors," in NIPS, 2006, pp. 977-984.
    • (2006) NIPS , pp. 977-984
    • Meeds, E.1    Ghahramani, Z.2    Neal, R.3    Roweis, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.