메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 623-656

Scalable collaborative filtering approaches for large reeommender systems

Author keywords

Collaborative filtering; Matrix factorization; Neighbor based correction; Netflix Prize; Reeommender systems

Indexed keywords

COLLABORATIVE FILTERING; MATRIX FACTORIZATION; NEIGHBOR BASED CORRECTION; NETFLIX PRIZE; REEOMMENDER SYSTEMS;

EID: 64149121935     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (435)

References (34)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17:734-749, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 2(1):53-58, 1989.
    • (1989) Neural Networks , vol.2 , Issue.1 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 3
    • 64149117953 scopus 로고    scopus 로고
    • R. Bell, Y. Koren, and Ch. Volinsky. Chasing $1,000,000: How we won the Netflix Progress Prize. ASA Statistical and Computing Graphics Newsletter, 18(2):4-12, December 2007a.
    • R. Bell, Y. Koren, and Ch. Volinsky. Chasing $1,000,000: How we won the Netflix Progress Prize. ASA Statistical and Computing Graphics Newsletter, 18(2):4-12, December 2007a.
  • 4
    • 49749086487 scopus 로고    scopus 로고
    • Scalable collaborative filtering with jointly derived neighborhood interpolation weights
    • Omaha, Nebraska, USA
    • th IEEE Int. Conf. on Data Mining, pages 43-52, Omaha, Nebraska, USA, 2007a.
    • (2007) th IEEE Int. Conf. on Data Mining , pp. 43-52
    • Bell, R.M.1    Koren, Y.2
  • 6
    • 57049165370 scopus 로고    scopus 로고
    • The BellKor solution to the Netflix Prize
    • Technical Report, AT&T Labs Research
    • R. M. Bell, Y. Koren, and Ch. Volinsky. The BellKor solution to the Netflix Prize. Technical Report, AT&T Labs Research, 2007b. http://www.netflixprize.com/assets/ ProgressPrize2007-KorBell.pdf.
    • (2007)
    • Bell, R.M.1    Koren, Y.2    Volinsky, C.3
  • 11
    • 33749236093 scopus 로고    scopus 로고
    • Collaborative prediction using ensembles of maximum margin matrix factorizations
    • Pittsburgh, Pennsylvania, USA
    • th Int. Conf on Machine learning, pages 249-256, Pittsburgh, Pennsylvania, USA, 2006.
    • (2006) th Int. Conf on Machine learning , pp. 249-256
    • DeCoste, D.1
  • 14
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12):61-70, 1992.
    • (1992) Communications of the ACM , vol.35 , Issue.12 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.M.3    Terry, D.4
  • 15
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: a constant time collaborative filtering algorithm. Information Retrieval, 4(2): 133-151, 2001.
    • (2001) Information Retrieval , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 18
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22(1):89- 115,2004.
    • (2004) ACM Trans. Inf. Syst , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 20
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 25
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, Massachusetts, USA
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, Massachusetts, USA, 2008.
    • (2008) Advances in Neural Information Processing Systems 20
    • Salakhutdinov, R.1    Mnih, A.2
  • 34
    • 34248233686 scopus 로고    scopus 로고
    • Using SVD and demographic data for the enhancement of generalized collaborative filtering
    • M. G. Vozalis and K. G. Margaritis. Using SVD and demographic data for the enhancement of generalized collaborative filtering. Information Sciences, 177(15):3017-3037, 2007.
    • (2007) Information Sciences , vol.177 , Issue.15 , pp. 3017-3037
    • Vozalis, M.G.1    Margaritis, K.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.