메뉴 건너뛰기




Volumn 750, Issue , 2011, Pages 307-319

Rho GTPases in Hematopoietic Stem/Progenitor Cell Migration

Author keywords

F actin cytoskeleton; Hematopoietic stem and progenitor cells; Migration; Rho GTPases; SCF c Kit; SDF 1 CXCR4

Indexed keywords

ACTIN; NEUROPEPTIDE; PROTEIN CDC42; RAC PROTEIN; RAC1 PROTEIN, MOUSE; RHO GUANINE NUCLEOTIDE BINDING PROTEIN; RHOA PROTEIN, MOUSE;

EID: 80052629675     PISSN: 10643745     EISSN: 19406029     Source Type: Book Series    
DOI: 10.1007/978-1-61779-145-1_21     Document Type: Chapter
Times cited : (9)

References (25)
  • 1
    • 0032559362 scopus 로고    scopus 로고
    • Rho GTPases and the actin cytoskeleton
    • Hall, A. (1998) Rho GTPases and the actin cytoskeleton Science 279, 509–14.
    • (1998) Science , vol.279 , pp. 509-514
    • Hall, A.1
  • 2
    • 0026778133 scopus 로고    scopus 로고
    • The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors
    • Ridley, A.J., and Hall, A. (1998) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors Cell 70, 389–99.
    • (1998) Cell , vol.70 , pp. 389-399
    • Ridley, A.J.1    Hall, A.2
  • 3
    • 0034865456 scopus 로고    scopus 로고
    • Rho GTPases and cell migration
    • Ridley, A.J. (2001) Rho GTPases and cell migration J Cell Sci 114, 2713–22.
    • (2001) J Cell Sci , vol.114 , pp. 2713-2722
    • Ridley, A.J.1
  • 4
    • 0025944684 scopus 로고
    • Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1
    • Abo, A., Pick, E., Hall, A., Totty, N., Teahan, C.G., and Segal, A.W. (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1 Nature 353, 668–70.
    • (1991) Nature , vol.353 , pp. 668-670
    • Abo, A.1    Pick, E.2    Hall, A.3    Totty, N.4    Teahan, C.G.5    Segal, A.W.6
  • 6
    • 0032537743 scopus 로고    scopus 로고
    • Lymphocyte signalling: A coordinating role for Vav?
    • Cantrell, D. (1998) Lymphocyte signalling: a coordinating role for Vav? Curr Biol 8, R535–8.
    • (1998) Curr Biol , vol.8 , pp. R535-R538
    • Cantrell, D.1
  • 7
    • 0034739851 scopus 로고    scopus 로고
    • Temporal and spatial distribution of activated Pak1 in fibroblasts
    • Sells, M.A., Pfaff, A., and Chernoff, J. (2000) Temporal and spatial distribution of activated Pak1 in fibroblasts J Cell Biol 151, 1449–58.
    • (2000) J Cell Biol , vol.151 , pp. 1449-1458
    • Sells, M.A.1    Pfaff, A.2    Chernoff, J.3
  • 8
    • 0035943401 scopus 로고    scopus 로고
    • Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through
    • Etienne-Manneville, S., and Hall, A. (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta Cell 106, 489–98.
    • (2001) Pkczeta Cell , vol.106 , pp. 489-498
    • Etienne-Manneville, S.1    Hall, A.2
  • 9
    • 0028961293 scopus 로고
    • Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopo-dia
    • Nobes, C.D., and Hall, A. (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopo-dia Cell 81, 53–62.
    • (1995) Cell , vol.81 , pp. 53-62
    • Nobes, C.D.1    Hall, A.2
  • 11
    • 0033577975 scopus 로고    scopus 로고
    • Interplay between Rac and Rho in the control of substrate contact dynamics
    • Rottner, K., Hall, A., and Small, J.V. (1999) Interplay between Rac and Rho in the control of substrate contact dynamics Curr Biol 9, 640–8.
    • (1999) Curr Biol , vol.9 , pp. 640-648
    • Rottner, K.1    Hall, A.2    Small, J.V.3
  • 12
    • 0033081753 scopus 로고    scopus 로고
    • Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton
    • Ren X.D., Kiosses W.B., and Schwartz M.A. (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18, 578–85.
    • (1999) EMBO J , vol.18 , pp. 578-585
    • Ren, X.D.1    Kiosses, W.B.2    Schwartz, M.A.3
  • 13
    • 23244435467 scopus 로고    scopus 로고
    • How do stem cells find their way home?
    • Lapidot, T., Dar, A., and Kollet, O. (2005) How do stem cells find their way home? Blood 106, 1901–10.
    • (2005) Blood , vol.106 , pp. 1901-1910
    • Lapidot, T.1    Dar, A.2    Kollet, O.3
  • 14
    • 0033524834 scopus 로고    scopus 로고
    • Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4
    • Peled, A., Petit, I., Kollet, O., et al. (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 Science 283, 845–8.
    • (1999) Science , vol.283 , pp. 845-848
    • Peled, A.1    Petit, I.2    Kollet, O.3
  • 15
    • 0034210221 scopus 로고    scopus 로고
    • The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: Role in transendothelial/stromal migration and engraftment of NOD/SCID mice
    • Peled, A., Kollet, O., Ponomaryov, T., et al. (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice Blood 95, 3289–96.
    • (2000) Blood , vol.95 , pp. 3289-3296
    • Peled, A.1    Kollet, O.2    Ponomaryov, T.3
  • 16
    • 0141923912 scopus 로고    scopus 로고
    • Lysophospholipids synergistically promote primitive hematopoietic cell chemotaxis via a mechanism involving Vav 1
    • Whetton, A.D., Lu, Y., Pierce, A., Carney, L., and Spooncer, E. (2003) Lysophospholipids synergistically promote primitive hematopoietic cell chemotaxis via a mechanism involving Vav 1 Blood 102, 2798–802.
    • (2003) Blood , vol.102 , pp. 2798-2802
    • Whetton, A.D.1    Lu, Y.2    Pierce, A.3    Carney, L.4    Spooncer, E.5
  • 17
    • 0035826843 scopus 로고    scopus 로고
    • Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration
    • Yang, F.C., Atkinson, S.J., Gu, Y., et al. (2001) Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization Proc Natl Acad Sci USA 98, 5614–8.
    • (2001) And Mobilization Proc Natl Acad Sci USA , vol.98 , pp. 5614-5618
    • Yang, F.C.1    Atkinson, S.J.2    Gu, Y.3
  • 18
    • 0142084736 scopus 로고    scopus 로고
    • Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases
    • Gu, Y., Filippi, M.D., Cancelas, J.A., et al. (2003) Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases Science 302, 445–9.
    • (2003) Science , vol.302 , pp. 445-449
    • Gu, Y.1    Filippi, M.D.2    Cancelas, J.A.3
  • 19
    • 34247621290 scopus 로고    scopus 로고
    • Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow
    • Yang, L., Wang, L., Geiger, H., Cancelas, J.A., Mo, J., and Zheng, Y. (2007) Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow Proc Natl Acad Sci USA 104, 5091–6.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 5091-5096
    • Yang, L.1    Wang, L.2    Geiger, H.3    Cancelas, J.A.4    Mo, J.5    Zheng, Y.6
  • 20
    • 0033531955 scopus 로고    scopus 로고
    • Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases
    • Benard, V., Bohl, B.P., and Bokoch, G.M. (1999) Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases J Biol Chem 274, 13198–204.
    • (1999) J Biol Chem , vol.274 , pp. 13198-13204
    • Benard, V.1    Bohl, B.P.2    Bokoch, G.M.3
  • 21
    • 0028947586 scopus 로고
    • Cytokines increase human hemopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins
    • Levesque, J.P., Leavesley, D.I., Niutta, S., Vadas, M., and Simmons, P.J. (1995) Cytokines increase human hemopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins J Exp Med 181, 1805–15.
    • (1995) J Exp Med , vol.181 , pp. 1805-1815
    • Levesque, J.P.1    Leavesley, D.I.2    Niutta, S.3    Vadas, M.4    Simmons, P.J.5
  • 22
    • 0344305784 scopus 로고    scopus 로고
    • Cell migration: Integrating signals from front to back
    • Ridley, A.J., Schwartz, M.A., Burridge, K., et al. (2003) Cell migration: integrating signals from front to back Science 302, 1704–09.
    • (2003) Science , vol.302 , pp. 1704-1709
    • Ridley, A.J.1    Schwartz, M.A.2    Burridge, K.3
  • 23
    • 0345621702 scopus 로고    scopus 로고
    • Transendothelial migration of CD34+ and mature hematopoietic cells: An in vitro study using a human bone marrow endothelial cell line
    • Mohle, R., Moore, M.A., Nachman, R.L., and Rafii, S. (1997) Transendothelial migration of CD34+ and mature hematopoietic cells: an in vitro study using a human bone marrow endothelial cell line Blood 89, 72–80.
    • (1997) Blood , vol.89 , pp. 72-80
    • Mohle, R.1    Moore, M.A.2    Nachman, R.L.3    Rafii, S.4
  • 24
    • 0032519823 scopus 로고    scopus 로고
    • Transmigration of CD34+ cells across specialized and nonspecialized endothelium requires prior activation by growth factors and is mediated by PECAM-1 (CD31)
    • Yong, K.L., Watts, M., Shaun Thomas, N., Sullivan, A., Ings, S., and Linch, D.C. (1998) Transmigration of CD34+ cells across specialized and nonspecialized endothelium requires prior activation by growth factors and is mediated by PECAM-1 (CD31) Blood 91, 1196–205.
    • (1998) Blood , vol.91 , pp. 1196-1205
    • Yong, K.L.1    Watts, M.2    Shaun Thomas, N.3    Sullivan, A.4    Ings, S.5    Linch, D.C.6
  • 25
    • 0032964789 scopus 로고    scopus 로고
    • Selective transendothelial migration of hematopoietic progenitor cells: A role in homing of progenitor cells
    • Imai, K., Kobayashi, M., Wang, J., et al. (1999) Selective transendothelial migration of hematopoietic progenitor cells: a role in homing of progenitor cells Blood 93, 149–56.
    • (1999) Blood , vol.93 , pp. 149-156
    • Imai, K.1    Kobayashi, M.2    Wang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.