메뉴 건너뛰기




Volumn 75, Issue , 2010, Pages 395-401

Molecular Structures and Interactions in the Yeast Kinetochore

Author keywords

[No Author keywords available]

Indexed keywords

DNA BINDING PROTEIN; FUNGAL DNA; NDC80 COMPLEX;

EID: 80052398753     PISSN: 00917451     EISSN: None     Source Type: Book Series    
DOI: 10.1101/sqb.2010.75.040     Document Type: Article
Times cited : (7)

References (47)
  • 2
    • 35748972335 scopus 로고    scopus 로고
    • Crystal structure of the yeast inner kinetochore subunit Cep3p
    • Bellizzi JJ III, Sorger PK, Harrison SC. 2007. Crystal structure of the yeast inner kinetochore subunit Cep3p. Structure 15: 1422- 1430.
    • (2007) Structure , vol.15 , pp. 1422-1430
    • Bellizzi III, J.J.1    Sorger, P.K.2    Harrison, S.C.3
  • 3
    • 0033106222 scopus 로고    scopus 로고
    • The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast
    • Biggins S, Severin FF, Bhalla N, Sassoon I, Hyman AA, Murray AW. 1999. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev 13: 532-544.
    • (1999) Genes Dev , vol.13 , pp. 532-544
    • Biggins, S.1    Severin, F.F.2    Bhalla, N.3    Sassoon, I.4    Hyman, A.A.5    Murray, A.W.6
  • 5
    • 34250316190 scopus 로고    scopus 로고
    • Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore
    • Camahort R, Li B, Florens L, Swanson SK, Washburn MP, Gerton JL. 2007. Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell 26: 853-865.
    • (2007) Mol Cell , vol.26 , pp. 853-865
    • Camahort, R.1    Li, B.2    Florens, L.3    Swanson, S.K.4    Washburn, M.P.5    Gerton, J.L.6
  • 6
    • 37549071893 scopus 로고    scopus 로고
    • Molecular architecture of the kinetochore-microtubule interface
    • Cheeseman IM, Desai A. 2008. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9: 33-46.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 33-46
    • Cheeseman, I.M.1    Desai, A.2
  • 7
    • 33751232957 scopus 로고    scopus 로고
    • The conserved KMN network constitutes the core microtubulebinding site of the kinetochore
    • Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A. 2006. The conserved KMN network constitutes the core microtubulebinding site of the kinetochore. Cell 127: 983-997.
    • (2006) Cell , vol.127 , pp. 983-997
    • Cheeseman, I.M.1    Chappie, J.S.2    Wilson-Kubalek, E.M.3    Desai, A.4
  • 10
    • 77955636058 scopus 로고    scopus 로고
    • The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments
    • Corbett KD, Yip CK, Ee L-S, Walz T, Amon A, Harrison SC. 2010. The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell 142: 556- 567.
    • (2010) Cell , vol.142 , pp. 556-567
    • Corbett, K.D.1    Yip, C.K.2    Ee, L.-S.3    Walz, T.4    Amon, A.5    Harrison, S.C.6
  • 11
    • 33751227843 scopus 로고    scopus 로고
    • Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
    • DeLuca JG, Gall WE, Ciferri C, Cimini D, Musacchio A, Salmon ED. 2006. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127: 969-982.
    • (2006) Cell , vol.127 , pp. 969-982
    • DeLuca, J.G.1    Gall, W.E.2    Ciferri, C.3    Cimini, D.4    Musacchio, A.5    Salmon, E.D.6
  • 12
    • 0346753737 scopus 로고    scopus 로고
    • Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes
    • De Wulf P, McAinsh AD, Sorger PK. 2003. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev 17: 2902-2921.
    • (2003) Genes Dev , vol.17 , pp. 2902-2921
    • De Wulf, P.1    McAinsh, A.D.2    Sorger, P.K.3
  • 14
    • 0031451181 scopus 로고    scopus 로고
    • Probing the architecture of a simple kinetochore using DNA-protein crosslinking
    • Espelin CW, Kaplan KB, Sorger PK. 1997. Probing the architecture of a simple kinetochore using DNA-protein crosslinking. J Cell Biol 139: 1383-1396.
    • (1997) J Cell Biol , vol.139 , pp. 1383-1396
    • Espelin, C.W.1    Kaplan, K.B.2    Sorger, P.K.3
  • 15
    • 0344276467 scopus 로고    scopus 로고
    • Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII
    • Espelin CW, Simons KT, Harrison SC, Sorger PK. 2003. Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII. Mol Biol Cell 14: 4557-4568.
    • (2003) Mol Biol Cell , vol.14 , pp. 4557-4568
    • Espelin, C.W.1    Simons, K.T.2    Harrison, S.C.3    Sorger, P.K.4
  • 16
    • 0020325948 scopus 로고
    • Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs
    • Fitzgerald-Hayes M, Clarke L, Carbon J. 1982. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29: 235-244.
    • (1982) Cell , vol.29 , pp. 235-244
    • Fitzgerald-Hayes, M.1    Clarke, L.2    Carbon, J.3
  • 17
    • 69249243677 scopus 로고    scopus 로고
    • Kinetochore composition, formation and organization
    • (ed. P De Wulf, WC Earnshaw). Springer, New York
    • Fukagawa T, De Wulf P. 2009. Kinetochore composition, formation and organization. In The kinetochore: From molecular discoveries to cancer therapy (ed. P De Wulf, WC Earnshaw), pp. 133-191. Springer, New York.
    • (2009) The kinetochore: From molecular discoveries to cancer therapy , pp. 133-191
    • Fukagawa, T.1    De Wulf, P.2
  • 18
    • 56349089656 scopus 로고    scopus 로고
    • Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1
    • Guimaraes GJ, Dong Y, McEwen BF, Deluca JG. 2008. Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr Biol 18: 1778-1784.
    • (2008) Curr Biol , vol.18 , pp. 1778-1784
    • Guimaraes, G.J.1    Dong, Y.2    McEwen, B.F.3    Deluca, J.G.4
  • 20
    • 44149083326 scopus 로고    scopus 로고
    • Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres
    • Joglekar AP, Bouck D, Finley K, Liu X, Wan Y, Berman J, He X, Salmon ED, Bloom KS. 2008. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J Cell Biol 181: 587-594.
    • (2008) J Cell Biol , vol.181 , pp. 587-594
    • Joglekar, A.P.1    Bouck, D.2    Finley, K.3    Liu, X.4    Wan, Y.5    Berman, J.6    He, X.7    Salmon, E.D.8    Bloom, K.S.9
  • 21
    • 0030662073 scopus 로고    scopus 로고
    • Regulating the yeast kinetochore by ubiquitin-dependent degradation and Skp1p-mediated phosphorylation
    • Kaplan KB, Hyman AA, Sorger PK. 1997. Regulating the yeast kinetochore by ubiquitin-dependent degradation and Skp1p-mediated phosphorylation. Cell 91: 491-500.
    • (1997) Cell , vol.91 , pp. 491-500
    • Kaplan, K.B.1    Hyman, A.A.2    Sorger, P.K.3
  • 22
    • 77952377598 scopus 로고    scopus 로고
    • The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex
    • Lampert F, Hornung P, Westermann S. 2010. The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J Cell Biol 189: 641-649.
    • (2010) J Cell Biol , vol.189 , pp. 641-649
    • Lampert, F.1    Hornung, P.2    Westermann, S.3
  • 23
    • 0026013226 scopus 로고
    • A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere
    • Lechner J, Carbon J. 1991. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64: 717-725.
    • (1991) Cell , vol.64 , pp. 717-725
    • Lechner, J.1    Carbon, J.2
  • 24
    • 77954056702 scopus 로고    scopus 로고
    • Contrasting models for kinetochore microtubule attachment in mammalian cells
    • McEwen BF, Dong Y. 2010. Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell Mol Life Sci 67: 2163-2172.
    • (2010) Cell Mol Life Sci , vol.67 , pp. 2163-2172
    • McEwen, B.F.1    Dong, Y.2
  • 25
    • 0025892340 scopus 로고
    • DNA binding of CPF1 is required for optimal centromere function but not for maintaining methionine prototrophy in yeast
    • Mellor J, Rathjen J, Jiang W, Barnes CA, Dowell SJ. 1991. DNA binding of CPF1 is required for optimal centromere function but not for maintaining methionine prototrophy in yeast. Nucleic Acids Res 19: 2961-2969.
    • (1991) Nucleic Acids Res , vol.19 , pp. 2961-2969
    • Mellor, J.1    Rathjen, J.2    Jiang, W.3    Barnes, C.A.4    Dowell, S.J.5
  • 26
    • 0029044625 scopus 로고
    • Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C
    • Meluh PB, Koshland D. 1995. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6: 793-807.
    • (1995) Mol Biol Cell , vol.6 , pp. 793-807
    • Meluh, P.B.1    Koshland, D.2
  • 27
    • 0032483564 scopus 로고    scopus 로고
    • Cse4p is a component of the core centromere of Saccharomyces cerevisiae
    • Meluh PB, Yang P, Glowczewski L, Koshland D, Smith MM. 1998. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94: 607-613.
    • (1998) Cell , vol.94 , pp. 607-613
    • Meluh, P.B.1    Yang, P.2    Glowczewski, L.3    Koshland, D.4    Smith, M.M.5
  • 28
    • 33744786043 scopus 로고    scopus 로고
    • Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
    • doi: 10.1186/gb-2006-7-3-r23
    • Meraldi P, McAinsh AD, Rheinbay E, Sorger PK. 2006. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7: R23. doi: 10.1186/gb-2006-7-3-r23.
    • (2006) Genome Biol , vol.7
    • Meraldi, P.1    McAinsh, A.D.2    Rheinbay, E.3    Sorger, P.K.4
  • 30
    • 34347373760 scopus 로고    scopus 로고
    • Protein arms in the kinetochore- microtubule interface of the yeast DASH complex
    • Miranda JJ, King DS, Harrison SC. 2007. Protein arms in the kinetochore- microtubule interface of the yeast DASH complex. Mol Biol Cell 18: 2503-2510.
    • (2007) Mol Biol Cell , vol.18 , pp. 2503-2510
    • Miranda, J.J.1    King, D.S.2    Harrison, S.C.3
  • 31
    • 34250173486 scopus 로고    scopus 로고
    • Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes
    • Mizuguchi G, Xiao H, Wisniewski J, Smith MM, Wu C. 2007. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129: 1153-1164.
    • (2007) Cell , vol.129 , pp. 1153-1164
    • Mizuguchi, G.1    Xiao, H.2    Wisniewski, J.3    Smith, M.M.4    Wu, C.5
  • 32
    • 33846694771 scopus 로고    scopus 로고
    • Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex
    • Monje-Casas F, Prabhu VR, Lee BH, Boselli M, Amon A. 2007. Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128: 477-490.
    • (2007) Cell , vol.128 , pp. 477-490
    • Monje-Casas, F.1    Prabhu, V.R.2    Lee, B.H.3    Boselli, M.4    Amon, A.5
  • 33
    • 7944223653 scopus 로고    scopus 로고
    • A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1
    • Obuse C, Iwasaki O, Kiyomitsu T, Goshima G, Toyoda Y, Yanagida M. 2004. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat Cell Biol 6: 1135-1141.
    • (2004) Nat Cell Biol , vol.6 , pp. 1135-1141
    • Obuse, C.1    Iwasaki, O.2    Kiyomitsu, T.3    Goshima, G.4    Toyoda, Y.5    Yanagida, M.6
  • 34
    • 70449626289 scopus 로고    scopus 로고
    • Roles for the conserved spc105p/kre28p complex in kinetochore- microtubule binding and the spindle assembly checkpoint
    • doi: 10.1371/journal.pone.0007640
    • Pagliuca C, Draviam VM, Marco E, Sorger PK, De Wulf P. 2009. Roles for the conserved spc105p/kre28p complex in kinetochore- microtubule binding and the spindle assembly checkpoint. PLoS One 4: e7640. doi: 10.1371/journal.pone.0007640.
    • (2009) PLoS One , vol.4
    • Pagliuca, C.1    Draviam, V.M.2    Marco, E.3    Sorger, P.K.4    De Wulf, P.5
  • 35
    • 30344462087 scopus 로고    scopus 로고
    • The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores
    • Pinsky BA, Kung C, Shokat KM, Biggins S. 2006. The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nat Cell Biol 8: 78-83.
    • (2006) Nat Cell Biol , vol.8 , pp. 78-83
    • Pinsky, B.A.1    Kung, C.2    Shokat, K.M.3    Biggins, S.4
  • 37
    • 0033620647 scopus 로고    scopus 로고
    • The unstable F-box protein p58-Ctf13 forms the structural core of the CBF3 kinetochore complex
    • Russell ID, Grancell AS, Sorger PK. 1999. The unstable F-box protein p58-Ctf13 forms the structural core of the CBF3 kinetochore complex. J Cell Biol 145: 933-950.
    • (1999) J Cell Biol , vol.145 , pp. 933-950
    • Russell, I.D.1    Grancell, A.S.2    Sorger, P.K.3
  • 38
    • 69849107380 scopus 로고    scopus 로고
    • The life and miracles of kinetochores
    • Santaguida S, Musacchio A. 2009. The life and miracles of kinetochores. EMBO J 28: 2511-2531.
    • (2009) EMBO J , vol.28 , pp. 2511-2531
    • Santaguida, S.1    Musacchio, A.2
  • 41
    • 0034704219 scopus 로고    scopus 로고
    • Functional genomics identifies monopolin: A kinetochore protein required for segregation of homologs during meiosis I
    • Toth A, Rabitsch KP, Galova M, Schleiffer A, Buonomo SB, Nasmyth K. 2000. Functional genomics identifies monopolin: A kinetochore protein required for segregation of homologs during meiosis I. Cell 103: 1155-1168.
    • (2000) Cell , vol.103 , pp. 1155-1168
    • Toth, A.1    Rabitsch, K.P.2    Galova, M.3    Schleiffer, A.4    Buonomo, S.B.5    Nasmyth, K.6
  • 44
    • 17244363408 scopus 로고    scopus 로고
    • Molecular organization of the Ndc80 complex, an essential kinetochore component
    • Wei RR, Sorger PK, Harrison SC. 2005. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci 102: 5363-5367.
    • (2005) Proc Natl Acad Sci , vol.102 , pp. 5363-5367
    • Wei, R.R.1    Sorger, P.K.2    Harrison, S.C.3
  • 45
    • 33846100785 scopus 로고    scopus 로고
    • The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment
    • Wei RR, Al-Bassam J, Harrison SC. 2007. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 14: 54-59.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 54-59
    • Wei, R.R.1    Al-Bassam, J.2    Harrison, S.C.3
  • 47
    • 33644850985 scopus 로고    scopus 로고
    • The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends
    • Westermann S, Wang HW, Avila-Sakar A, Drubin DG, Nogales E, Barnes G. 2006. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440: 565-569.
    • (2006) Nature , vol.440 , pp. 565-569
    • Westermann, S.1    Wang, H.W.2    Avila-Sakar, A.3    Drubin, D.G.4    Nogales, E.5    Barnes, G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.