메뉴 건너뛰기




Volumn 193, Issue 17, 2011, Pages 4495-4508

Uracil-DNA glycosylase of Thermoplasma acidophilum directs long-patch base excision repair, which is promoted by deoxynucleoside triphosphates and ATP/ADP, into short-patch repair

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE DIPHOSPHATE; ADENOSINE TRIPHOSPHATE; CELL EXTRACT; DEOXYNUCLEOTIDE TRIPHOSPHATE; POLYDEOXYRIBONUCLEOTIDE SYNTHASE; RECOMBINANT DNA LIGASE; RECOMBINANT PROTEIN; RECOMBINANT URACIL DNA GLYCOSYLASE; UNCLASSIFIED DRUG; URACIL; URACIL DNA GLYCOSIDASE; XRCC1 PROTEIN;

EID: 80052308991     PISSN: 00219193     EISSN: 10985530     Source Type: Journal    
DOI: 10.1128/JB.00233-11     Document Type: Article
Times cited : (9)

References (77)
  • 1
    • 6044230603 scopus 로고    scopus 로고
    • Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells
    • Akbari, M., et al. 2004. Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Nucleic Acids Res. 32:5486-5498.
    • (2004) Nucleic Acids Res , vol.32 , pp. 5486-5498
    • Akbari, M.1
  • 2
    • 67349099614 scopus 로고    scopus 로고
    • Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity
    • Akbari, M., et al. 2009. Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity. DNA Repair 8:834-843.
    • (2009) DNA Repair , vol.8 , pp. 834-843
    • Akbari, M.1
  • 3
    • 0347510577 scopus 로고    scopus 로고
    • Orchestration of base excision repair by controlling the rates of enzymatic activities
    • Allinson, S. L., K. M. Sleeth, G. E. Matthewman, and G. L. Dianov. 2004. Orchestration of base excision repair by controlling the rates of enzymatic activities. DNA Repair 3:23-31.
    • (2004) DNA Repair , vol.3 , pp. 23-31
    • Allinson, S.L.1    Sleeth, K.M.2    Matthewman, G.E.3    Dianov, G.L.4
  • 4
    • 4844223399 scopus 로고    scopus 로고
    • A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in Schizosaccharomyces pombe
    • Alseth, I., H. Korvald, F. Osman, E. Seeberg, and M. Bjørås. 2004. A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res. 32:5119- 5125.
    • (2004) Nucleic Acids Res , vol.32 , pp. 5119-5125
    • Alseth, I.1    Korvald, H.2    Osman, F.3    Seeberg, E.4    Bjørås, M.5
  • 5
    • 16244423009 scopus 로고    scopus 로고
    • Incorporation of dUMP into DNA is a major source of spontaneous DNA damage, while excision of uracil is not required for cytotoxicity of fluoropyrimidines in mouse embryonic fibroblasts
    • Andersen, S., et al. 2005. Incorporation of dUMP into DNA is a major source of spontaneous DNA damage, while excision of uracil is not required for cytotoxicity of fluoropyrimidines in mouse embryonic fibroblasts. Carcinogenesis 26:547-555.
    • (2005) Carcinogenesis , vol.26 , pp. 547-555
    • Andersen, S.1
  • 6
    • 0024516792 scopus 로고
    • The multiple activities of Escherichia coli endonuclease IV and the extreme lability of 5'-terminal base-free deoxyribose 5-phosphates
    • Bailly, V., and W. G. Verly. 1989. The multiple activities of Escherichia coli endonuclease IV and the extreme lability of 5'-terminal base-free deoxyribose 5-phosphates. Biochem. J. 259:761-768.
    • (1989) Biochem. J. , vol.259 , pp. 761-768
    • Bailly, V.1    Verly, W.G.2
  • 7
    • 0034734386 scopus 로고    scopus 로고
    • Structural design of a eukaryotic DNA repair polymerase: DNA polymerase β
    • Beard, W. A., and S. H. Wilson. 2000. Structural design of a eukaryotic DNA repair polymerase: DNA polymerase β. Mutat. Res. 460:231-244.
    • (2000) Mutat. Res. , vol.460 , pp. 231-244
    • Beard, W.A.1    Wilson, S.H.2
  • 8
    • 0037159231 scopus 로고    scopus 로고
    • Methylpurine DNA glycosylase of the hyperthermophilic archaeon Archaeoglobus fulgidus
    • Birkeland, N.-K., H. Ånensen, et al. 2002. Methylpurine DNA glycosylase of the hyperthermophilic archaeon Archaeoglobus fulgidus. Biochemistry 41: 12697-12705.
    • (2002) Biochemistry , vol.41 , pp. 12697-12705
    • Birkeland, N.-K.1    Ånensen, H.2
  • 9
    • 0348140585 scopus 로고    scopus 로고
    • Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae
    • Boiteux, S., and M. Guillet. 2004. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair 3:1-12.
    • (2004) DNA Repair , vol.3 , pp. 1-12
    • Boiteux, S.1    Guillet, M.2
  • 10
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
    • (1976) Anal. Biochem. , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 11
    • 0035850219 scopus 로고    scopus 로고
    • Repair activities of 8-oxoguanine DNA glycosylase from Archaeoglobus fulgidus, a hyperthermophilic archaeon
    • Chung, J. H., M.-J. Suh, Y. I. Park, J. A. Tainer, and Y. S. Han. 2001. Repair activities of 8-oxoguanine DNA glycosylase from Archaeoglobus fulgidus, a hyperthermophilic archaeon. Mutat. Res. 486:99-111.
    • (2001) Mutat. Res. , vol.486 , pp. 99-111
    • Chung, J.H.1    Suh, M.-J.2    Park, Y.I.3    Tainer, J.A.4    Han, Y.S.5
  • 12
    • 0014963118 scopus 로고
    • A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile
    • Darland, G., T. D. Brock, W. Samsonoff, and S. F. Conti. 1970. A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170:1416-1418.
    • (1970) Science , vol.170 , pp. 1416-1418
    • Darland, G.1    Brock, T.D.2    Samsonoff, W.3    Conti, S.F.4
  • 13
    • 0026589375 scopus 로고
    • Generation of single-nucleotide repair patches following excision of uracil residues from DNA
    • Dianov, G., A. Price, and T. Lindahl. 1992. Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol. Cell. Biol. 12:1605-1612.
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 1605-1612
    • Dianov, G.1    Price, A.2    Lindahl, T.3
  • 14
    • 0242299709 scopus 로고    scopus 로고
    • Monitoring base excision repair by in vitro assays
    • Dianov, G. L. 2003. Monitoring base excision repair by in vitro assays. Toxicology 193:35-41.
    • (2003) Toxicology , vol.193 , pp. 35-41
    • Dianov, G.L.1
  • 16
    • 0034327406 scopus 로고    scopus 로고
    • Structural and mechanistic conservation in DNA ligases
    • Doherty, A. J., and S. W. Suh. 2000. Structural and mechanistic conservation in DNA ligases. Nucleic Acids Res. 28:4051-4058.
    • (2000) Nucleic Acids Res , vol.28 , pp. 4051-4058
    • Doherty, A.J.1    Suh, S.W.2
  • 18
    • 0037154277 scopus 로고    scopus 로고
    • Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum
    • Fitz-Gibbon, S. T., et al. 2002. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc. Natl. Acad. Sci. U. S. A. 99: 984-989.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 984-989
    • Fitz-Gibbon, S.T.1
  • 19
    • 0036894880 scopus 로고    scopus 로고
    • Structural basis for uracil recognition by archaeal family B DNA polymerases
    • Fogg, M. J., L. H. Pearl, and B. A. Connolly. 2002. Structural basis for uracil recognition by archaeal family B DNA polymerases. Nat. Struct. Biol. 9:922- 927.
    • (2002) Nat. Struct. Biol. , vol.9 , pp. 922-927
    • Fogg, M.J.1    Pearl, L.H.2    Connolly, B.A.3
  • 20
    • 33847625356 scopus 로고    scopus 로고
    • Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways
    • Fortini, P., and E. Dogliotti. 2007. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair 6:398-409.
    • (2007) DNA Repair , vol.6 , pp. 398-409
    • Fortini, P.1    Dogliotti, E.2
  • 21
    • 0025344222 scopus 로고
    • A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy
    • Frederico, L. A., T. A. Kunkel, and B. R. Shaw. 1990. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29:2532-2537.
    • (1990) Biochemistry , vol.29 , pp. 2532-2537
    • Frederico, L.A.1    Kunkel, T.A.2    Shaw, B.R.3
  • 23
    • 33751012715 scopus 로고    scopus 로고
    • The Methanothermobacter thermautotrophicus ExoIII homologue Mth212 is a DNA uridine endonuclease
    • Georg, J., et al. 2006. The Methanothermobacter thermautotrophicus ExoIII homologue Mth212 is a DNA uridine endonuclease. Nucleic Acids Res. 34:5325-5336.
    • (2006) Nucleic Acids Res , vol.34 , pp. 5325-5336
    • Georg, J.1
  • 24
    • 0347510578 scopus 로고    scopus 로고
    • Involvement of two endonuclease III homologs in the base excision repair pathway for the processing of DNA alkylation damage in Saccharomyces cerevisiae
    • Hanna, M., et al. 2004. Involvement of two endonuclease III homologs in the base excision repair pathway for the processing of DNA alkylation damage in Saccharomyces cerevisiae. DNA Repair 3:51-59.
    • (2004) DNA Repair , vol.3 , pp. 51-59
    • Hanna, M.1
  • 25
    • 0028281443 scopus 로고
    • The characterization of a mammalian DNA structure-specific endonuclease
    • Harrington, J. J., and M. R. Lieber. 1994. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 13:1235-1246.
    • (1994) EMBO J , vol.13 , pp. 1235-1246
    • Harrington, J.J.1    Lieber, M.R.2
  • 26
    • 0141996214 scopus 로고    scopus 로고
    • Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8
    • Hoseki, J., et al. 2003. Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8. J. Mol. Biol. 333:515-526.
    • (2003) J. Mol. Biol. , vol.333 , pp. 515-526
    • Hoseki, J.1
  • 27
    • 0142070924 scopus 로고    scopus 로고
    • A novel ADP-dependent DNA ligase from Aeropyrum pernix K1
    • Jeon, S.-J., and K. Ishikawa. 2003. A novel ADP-dependent DNA ligase from Aeropyrum pernix K1. FEBS Lett. 550:69-73.
    • (2003) FEBS Lett , vol.550 , pp. 69-73
    • Jeon, S.-J.1    Ishikawa, K.2
  • 28
    • 0031458333 scopus 로고    scopus 로고
    • The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus
    • Klenk, H.-P., et al. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364-370.
    • (1997) Nature , vol.390 , pp. 364-370
    • Klenk, H.-P.1
  • 29
    • 0030957997 scopus 로고    scopus 로고
    • Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1)
    • Klungland, A., and T. Lindahl. 1997. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16:3341-3348.
    • (1997) EMBO J , vol.16 , pp. 3341-3348
    • Klungland, A.1    Lindahl, T.2
  • 30
    • 78049369798 scopus 로고    scopus 로고
    • The hyperthermophilic euryarchaeon Archaeoglobus fulgidus repairs uracil by single-nucleotide replacement
    • Knævelsrud, I., et al. 2010. The hyperthermophilic euryarchaeon Archaeoglobus fulgidus repairs uracil by single-nucleotide replacement. J. Bacteriol. 192:5755-5766.
    • (2010) J. Bacteriol. , vol.192 , pp. 5755-5766
    • Knævelsrud, I.1
  • 31
    • 0035915398 scopus 로고    scopus 로고
    • Excision of uracil from DNA by the hyperthermophilic Afung protein is dependent on the opposite base and stimulated by heat-induced transition to a more open structure
    • Knævelsrud, I., et al. 2001. Excision of uracil from DNA by the hyperthermophilic Afung protein is dependent on the opposite base and stimulated by heat-induced transition to a more open structure. Mutat. Res. 487:173-190.
    • (2001) Mutat. Res. , vol.487 , pp. 173-190
    • Knævelsrud, I.1
  • 33
    • 0030272402 scopus 로고    scopus 로고
    • Uracil-DNA glycosylase activities in hyperthermophilic microorganisms
    • Koulis, A., D. A. Cowan, L. H. Pearl, and R. Savva. 1996. Uracil-DNA glycosylase activities in hyperthermophilic microorganisms. FEMS Microbiol. Lett. 143:267-271.
    • (1996) FEMS Microbiol. Lett. , vol.143 , pp. 267-271
    • Koulis, A.1    Cowan, D.A.2    Pearl, L.H.3    Savva, R.4
  • 34
    • 0019878052 scopus 로고
    • Uracil DNA-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs
    • Krokan, H., and C. U. Wittwer. 1981. Uracil DNA-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs. Nucleic Acids Res. 9:2599-2613.
    • (1981) Nucleic Acids Res , vol.9 , pp. 2599-2613
    • Krokan, H.1    Wittwer, C.U.2
  • 35
    • 0029842307 scopus 로고    scopus 로고
    • Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase β and the XRCC1 protein
    • Kubota, Y., et al. 1996. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase β and the XRCC1 protein. EMBO J. 15:6662-6670.
    • (1996) EMBO J , vol.15 , pp. 6662-6670
    • Kubota, Y.1
  • 36
    • 0142096802 scopus 로고    scopus 로고
    • Biochemical characterization of an ATP-dependent DNA ligase from the hyperthermophilic crenarchaeon Sulfolobus shibatae
    • Lai, X., H. Shao, F. Hao, and L. Huang. 2002. Biochemical characterization of an ATP-dependent DNA ligase from the hyperthermophilic crenarchaeon Sulfolobus shibatae. Extremophiles 6:469-477.
    • (2002) Extremophiles , vol.6 , pp. 469-477
    • Lai, X.1    Shao, H.2    Hao, F.3    Huang, L.4
  • 37
    • 34247269030 scopus 로고    scopus 로고
    • Structural basis for enzymatic excision of N1-methyladenine and N3-methylcytosine from DNA
    • Leiros, I., et al. 2007. Structural basis for enzymatic excision of N1-methyladenine and N3-methylcytosine from DNA. EMBO J. 26:2206-2217.
    • (2007) EMBO J , vol.26 , pp. 2206-2217
    • Leiros, I.1
  • 38
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709-715.
    • (1993) Nature , vol.362 , pp. 709-715
    • Lindahl, T.1
  • 39
    • 0016257644 scopus 로고
    • Heat-induced deamination of cytosine residues in deoxyribonucleic acid
    • Lindahl, T., and B. Nyberg. 1974. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13:3405-3410.
    • (1974) Biochemistry , vol.13 , pp. 3405-3410
    • Lindahl, T.1    Nyberg, B.2
  • 40
    • 67349136743 scopus 로고    scopus 로고
    • Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum
    • Lingaraju, G. M., A. E. Prota, and F. K. Winkler. 2009. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. DNA Repair 8:857-864.
    • (2009) DNA Repair , vol.8 , pp. 857-864
    • Lingaraju, G.M.1    Prota, A.E.2    Winkler, F.K.3
  • 41
    • 0029028964 scopus 로고
    • Excision of deoxyribose phosphate residues by DNA polymerase β during DNA repair
    • Matsumoto, Y., and K. Kim. 1995. Excision of deoxyribose phosphate residues by DNA polymerase β during DNA repair. Science 269:699-702.
    • (1995) Science , vol.269 , pp. 699-702
    • Matsumoto, Y.1    Kim, K.2
  • 42
    • 0026101901 scopus 로고
    • Stereochemical studies of the β-elimination reactions at aldehydic abasic sites in DNA: endonuclease III from Escherichia coli, sodium hydroxide, and Lys-Trp-Lys
    • Mazumder, A., et al. 1991. Stereochemical studies of the β-elimination reactions at aldehydic abasic sites in DNA: endonuclease III from Escherichia coli, sodium hydroxide, and Lys-Trp-Lys. Biochemistry 30:1119-1126.
    • (1991) Biochemistry , vol.30 , pp. 1119-1126
    • Mazumder, A.1
  • 43
    • 0025043782 scopus 로고
    • Use of ATP, dATP and their alpha-thio derivatives to study DNA ligase adenylation
    • Montecucco, A., M. Lestingi, G. Pedrali-Noy, S. Spadari, and G. Ciarrocchi. 1990. Use of ATP, dATP and their alpha-thio derivatives to study DNA ligase adenylation. Biochem. J. 271:265-268.
    • (1990) Biochem. J. , vol.271 , pp. 265-268
    • Montecucco, A.1    Lestingi, M.2    Pedrali-Noy, G.3    Spadari, S.4    Ciarrocchi, G.5
  • 44
    • 2442688825 scopus 로고    scopus 로고
    • A non-isotopic method for the determination of activity of the thermostable NAD-dependent DNA ligase from Thermus thermophilus HB8
    • Muerhoff, A. S., G. J. Dawson, and S. M. Desai. 2004. A non-isotopic method for the determination of activity of the thermostable NAD-dependent DNA ligase from Thermus thermophilus HB8. J. Virol. Methods 119:171-176.
    • (2004) J. Virol. Methods , vol.119 , pp. 171-176
    • Muerhoff, A.S.1    Dawson, G.J.2    Desai, S.M.3
  • 45
    • 0004370304 scopus 로고
    • Physical association of the 2,6-diamino-4-hydroxy-5N-formamidopyrimidine-DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites
    • O'Connor, T. R., and J. Laval. 1989. Physical association of the 2,6-diamino-4-hydroxy-5N-formamidopyrimidine-DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites. Proc. Natl. Acad. Sci. U. S. A. 86:5222-5226.
    • (1989) Proc. Natl. Acad. Sci. U. S. A. , vol.86 , pp. 5222-5226
    • O'Connor, T.R.1    Laval, J.2
  • 46
    • 0033168183 scopus 로고    scopus 로고
    • Post-replicative base excision repair in replication foci
    • Otterlei, M., et al. 1999. Post-replicative base excision repair in replication foci. EMBO J. 18:3834-3844.
    • (1999) EMBO J , vol.18 , pp. 3834-3844
    • Otterlei, M.1
  • 47
    • 0034734383 scopus 로고    scopus 로고
    • Structure and function in the uracil-DNA glycosylase superfamily
    • Pearl, L. H. 2000. Structure and function in the uracil-DNA glycosylase superfamily. Mutat. Res. 460:165-181.
    • (2000) Mutat. Res. , vol.460 , pp. 165-181
    • Pearl, L.H.1
  • 48
    • 33646092313 scopus 로고    scopus 로고
    • Roles of DNA ligase III and XRCC1 in regulating the switch between short patch and long patch BER
    • Petermann, E., C. Keil, and S. L. Oei. 2006. Roles of DNA ligase III and XRCC1 in regulating the switch between short patch and long patch BER. DNA Repair 5:544-555.
    • (2006) DNA Repair , vol.5 , pp. 544-555
    • Petermann, E.1    Keil, C.2    Oei, S.L.3
  • 49
    • 33845396500 scopus 로고    scopus 로고
    • Biochemical characterisation of LigN, an NAD -dependent DNA ligase from the halophilic euryarchaeon Haloferax volcanii that displays maximal in vitro activity at high salt concentrations
    • Poidevin, L., and S. A. MacNeill. 2006. Biochemical characterisation of LigN, an NAD -dependent DNA ligase from the halophilic euryarchaeon Haloferax volcanii that displays maximal in vitro activity at high salt concentrations. BMC Mol. Biol. 7:44.
    • (2006) BMC Mol. Biol. , vol.7 , pp. 44
    • Poidevin, L.1    MacNeill, S.A.2
  • 50
    • 77950366206 scopus 로고    scopus 로고
    • The helicase XPD unwinds bubble structures and is not stalled by DNA lesions removed by the nucleotide excision repair pathway
    • Rudolf, J., C. Rouillon, U. Schwarz-Linek, and M. F. White. 2010. The helicase XPD unwinds bubble structures and is not stalled by DNA lesions removed by the nucleotide excision repair pathway. Nucleic Acids Res. 38:931-941.
    • (2010) Nucleic Acids Res , vol.38 , pp. 931-941
    • Rudolf, J.1    Rouillon, C.2    Schwarz-Linek, U.3    White, M.F.4
  • 51
    • 0034727087 scopus 로고    scopus 로고
    • The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum
    • Ruepp, A., et al. 2000. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508-513.
    • (2000) Nature , vol.407 , pp. 508-513
    • Ruepp, A.1
  • 52
    • 0034705405 scopus 로고    scopus 로고
    • Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus
    • Sandigursky, M., and W. A. Franklin. 2000. Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus. J. Biol. Chem. 275:19146- 19149.
    • (2000) J. Biol. Chem. , vol.275 , pp. 19146-19149
    • Sandigursky, M.1    Franklin, W.A.2
  • 53
    • 0037124349 scopus 로고    scopus 로고
    • A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site
    • Sartori, A. A., S. Fitz-Gibbon, H. Yang, J. H. Miller, and J. Jiricny. 2002. A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. EMBO J. 21:3182-3191.
    • (2002) EMBO J , vol.21 , pp. 3182-3191
    • Sartori, A.A.1    Fitz-Gibbon, S.2    Yang, H.3    Miller, J.H.4    Jiricny, J.5
  • 54
    • 0041589201 scopus 로고    scopus 로고
    • Enzymology of base excision repair in the hyperthermophilic archaeon Pyrobaculum aerophilum
    • Sartori, A. A., and J. Jiricny. 2003. Enzymology of base excision repair in the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Biol. Chem. 278: 24563-24576.
    • (2003) J. Biol. Chem. , vol.278 , pp. 24563-24576
    • Sartori, A.A.1    Jiricny, J.2
  • 55
    • 0035839610 scopus 로고    scopus 로고
    • Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum
    • Sartori, A. A., P. Schaär, S. Fitz-Gibbon, J. H. Miller, and J. Jiricny. 2001. Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Biol. Chem. 276:29979- 29986.
    • (2001) J. Biol. Chem. , vol.276 , pp. 29979-29986
    • Sartori, A.A.1    Schaär, P.2    Fitz-Gibbon, S.3    Miller, J.H.4    Jiricny, J.5
  • 56
    • 58149173973 scopus 로고    scopus 로고
    • Structure and function of the abasic site specificity pocket of an AP endonuclease from Archaeoglobus fulgidus
    • Schmiedel, R., E. B. Kuettner, A. Keim, N. Sträter, and T. Greiner-Stöffele. 2009. Structure and function of the abasic site specificity pocket of an AP endonuclease from Archaeoglobus fulgidus. DNA Repair 8:219-231.
    • (2009) DNA Repair , vol.8 , pp. 219-231
    • Schmiedel, R.1    Kuettner, E.B.2    Keim, A.3    Sträter, N.4    Greiner-Stöffele, T.5
  • 57
    • 77949656067 scopus 로고    scopus 로고
    • Archaeal DNA uracil repair via direct strand incision: a minimal system reconstituted from purified components
    • Schomacher, L., et al. 2010. Archaeal DNA uracil repair via direct strand incision: a minimal system reconstituted from purified components. DNA Repair 9:438-447.
    • (2010) DNA Repair , vol.9 , pp. 438-447
    • Schomacher, L.1
  • 58
    • 1942503398 scopus 로고    scopus 로고
    • Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader
    • Seybert, A., and D. B. Wigley. 2004. Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader. EMBO J. 23:1360-1371.
    • (2004) EMBO J , vol.23 , pp. 1360-1371
    • Seybert, A.1    Wigley, D.B.2
  • 59
    • 0033566656 scopus 로고    scopus 로고
    • Identification of the Archaeoglobus fulgidus endonuclease III DNA interaction surface using heteronuclear NMR methods
    • Shekhtman, A., L. McNaughton, R. P. Cunningham, and S. M. Baxter. 1999. Identification of the Archaeoglobus fulgidus endonuclease III DNA interaction surface using heteronuclear NMR methods. Structure 7:919-930.
    • (1999) Structure , vol.7 , pp. 919-930
    • Shekhtman, A.1    McNaughton, L.2    Cunningham, R.P.3    Baxter, S.M.4
  • 60
    • 0028966181 scopus 로고
    • DNA polymerase β conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract
    • Singhal, R. K., R. Prasad, and S. H. Wilson. 1995. DNA polymerase β conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract. J. Biol. Chem. 270:949-957.
    • (1995) J. Biol. Chem. , vol.270 , pp. 949-957
    • Singhal, R.K.1    Prasad, R.2    Wilson, S.H.3
  • 61
    • 15644383855 scopus 로고    scopus 로고
    • Complete genome sequence of Methanobacterium thermoautotrophicum H: functional analysis and comparative genomics
    • Smith, D. R., et al. 1997. Complete genome sequence of Methanobacterium thermoautotrophicum H: functional analysis and comparative genomics. J. Bacteriol. 179:7135-7155.
    • (1997) J. Bacteriol. , vol.179 , pp. 7135-7155
    • Smith, D.R.1
  • 62
    • 0034659935 scopus 로고    scopus 로고
    • The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity
    • Sobol, R. W., et al. 2000. The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity. Nature 405: 807-810.
    • (2000) Nature , vol.405 , pp. 807-810
    • Sobol, R.W.1
  • 63
    • 0034209827 scopus 로고    scopus 로고
    • Characterization of an ATP-dependent DNA ligase from the thermophilic archaeon Methanobacterium thermoautotrophicum
    • Sriskanda, V., Z. Kelman, J. Hurwitz, and S. Shuman. 2000. Characterization of an ATP-dependent DNA ligase from the thermophilic archaeon Methanobacterium thermoautotrophicum. Nucleic Acids Res. 28:2221-2228.
    • (2000) Nucleic Acids Res , vol.28 , pp. 2221-2228
    • Sriskanda, V.1    Kelman, Z.2    Hurwitz, J.3    Shuman, S.4
  • 64
    • 0037052965 scopus 로고    scopus 로고
    • A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus
    • Starkuviene, V., and H.-J. Fritz. 2002. A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus. Nucleic Acids Res. 30:2097-2102.
    • (2002) Nucleic Acids Res , vol.30 , pp. 2097-2102
    • Starkuviene, V.1    Fritz, H.-J.2
  • 65
    • 0018182105 scopus 로고
    • Physiologically important stabilization of DNA by a prokaryotic histone-like protein
    • Stein, D. B., and D. G. Searcy. 1978. Physiologically important stabilization of DNA by a prokaryotic histone-like protein. Science 202:219-221.
    • (1978) Science , vol.202 , pp. 219-221
    • Stein, D.B.1    Searcy, D.G.2
  • 66
    • 0030788621 scopus 로고    scopus 로고
    • 3β-Phosphodiesterase activity of human apurinic/apyrimidinic endonuclease at DNA double-strand break ends
    • Suh, D., D. M. Wilson, III, and L. F. Povirk. 1997. 3β-Phosphodiesterase activity of human apurinic/apyrimidinic endonuclease at DNA double-strand break ends. Nucleic Acids Res. 25:2495-2500.
    • (1997) Nucleic Acids Res , vol.25 , pp. 2495-2500
    • Suh, D.1    Wilson III, D.M.2    Povirk, L.F.3
  • 67
    • 14844338678 scopus 로고    scopus 로고
    • Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1) DNA polymerase β and poly(ADPribose) polymerase 1 interplay between strand-displacement DNA synthesis and proofreading exonuclease activity
    • Sukhanova, M. V., et al. 2005. Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase β and poly(ADPribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Res. 33:1222-1229.
    • (2005) Nucleic Acids Res , vol.33 , pp. 1222-1229
    • Sukhanova, M.V.1
  • 68
    • 0037472087 scopus 로고    scopus 로고
    • Escherichia coli uracil- and ethenocytosine-initiated base excision DNA repair: rate-limiting step and patch size distribution
    • Sung, J.-S., and D. W. Mosbaugh. 2003. Escherichia coli uracil- and ethenocytosine-initiated base excision DNA repair: rate-limiting step and patch size distribution. Biochemistry 42:4613-4625.
    • (2003) Biochemistry , vol.42 , pp. 4613-4625
    • Sung, J.-S.1    Mosbaugh, D.W.2
  • 69
    • 0034746231 scopus 로고    scopus 로고
    • 3'-Phosphodiesterase and 3'35' exonuclease activities of yeast Apn2 protein and requirement of these activities for repair of oxidative DNA damage
    • Unk, I., L. Haracska, S. Prakash, and L. Prakash. 2001. 3'-Phosphodiesterase and 3'35' exonuclease activities of yeast Apn2 protein and requirement of these activities for repair of oxidative DNA damage. Mol. Cell. Biol. 21:1656-1661.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 1656-1661
    • Unk, I.1    Haracska, L.2    Prakash, S.3    Prakash, L.4
  • 70
    • 0035869114 scopus 로고    scopus 로고
    • Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step
    • Vidal, A. E., I. D. Hickson, S. Boiteux, and J. P. Radicella. 2001. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Nucleic Acids Res. 29:1285-1292.
    • (2001) Nucleic Acids Res , vol.29 , pp. 1285-1292
    • Vidal, A.E.1    Hickson, I.D.2    Boiteux, S.3    Radicella, J.P.4
  • 71
    • 53149103171 scopus 로고    scopus 로고
    • The rate of base excision repair of uracil is controlled by the initiating glycosylase
    • Visnes, T., M. Akbari, L. Hagen, G. Slupphaug, and H. E. Krokan. 2008. The rate of base excision repair of uracil is controlled by the initiating glycosylase. DNA Repair 7:1869-1881.
    • (2008) DNA Repair , vol.7 , pp. 1869-1881
    • Visnes, T.1    Akbari, M.2    Hagen, L.3    Slupphaug, G.4    Krokan, H.E.5
  • 72
    • 0019051753 scopus 로고
    • Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA
    • Warner, H. R., B. F. Demple, W. A. Deutsch, C. M. Kane, and S. Linn. 1980. Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA. Proc. Natl. Acad. Sci. U. S. A. 77:4602-4606.
    • (1980) Proc. Natl. Acad. Sci. U. S. A. , vol.77 , pp. 4602-4606
    • Warner, H.R.1    Demple, B.F.2    Deutsch, W.A.3    Kane, C.M.4    Linn, S.5
  • 73
    • 0036890204 scopus 로고    scopus 로고
    • Holding it together: chromatin in the Archaea
    • White, M. F., and S. D. Bell. 2002. Holding it together: chromatin in the Archaea. Trends Genet. 18:621-626.
    • (2002) Trends Genet , vol.18 , pp. 621-626
    • White, M.F.1    Bell, S.D.2
  • 74
    • 0023878893 scopus 로고
    • Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts
    • Wood, R. D., P. Robins, and T. Lindahl. 1988. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell 53: 97-106.
    • (1988) Cell , vol.53 , pp. 97-106
    • Wood, R.D.1    Robins, P.2    Lindahl, T.3
  • 75
    • 0037151021 scopus 로고    scopus 로고
    • Direct interaction between uracil-DNA glycosylase and a proliferating cell nuclear antigen homolog in the crenarchaeon Pyrobaculum aerophilum
    • Yang, H., et al. 2002. Direct interaction between uracil-DNA glycosylase and a proliferating cell nuclear antigen homolog in the crenarchaeon Pyrobaculum aerophilum. J. Biol. Chem. 277:22271-22278.
    • (2002) J. Biol. Chem. , vol.277 , pp. 22271-22278
    • Yang, H.1
  • 76
    • 0033951180 scopus 로고    scopus 로고
    • Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum
    • Yang, H., et al. 2000. Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Bacteriol. 182:1272-1279.
    • (2000) J. Bacteriol. , vol.182 , pp. 1272-1279
    • Yang, H.1
  • 77
    • 0035253777 scopus 로고    scopus 로고
    • A thermostable endonuclease III homolog from the archaeon Pyrobaculum aerophilum
    • Yang, H., et al. 2001. A thermostable endonuclease III homolog from the archaeon Pyrobaculum aerophilum. Nucleic Acids Res. 29:604-613.
    • (2001) Nucleic Acids Res , vol.29 , pp. 604-613
    • Yang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.