메뉴 건너뛰기




Volumn 25, Issue 18, 2011, Pages 2827-2836

Comparison of bootstrap confidence intervals for an ANN model of a karstic aquifer response

Author keywords

Artificial neural networks; Bootstrap; Confidence intervals; Karstic aquifers

Indexed keywords

BOOTSTRAP; BOOTSTRAP CONFIDENCE INTERVAL; BOOTSTRAP METHOD; CONFIDENCE INTERVAL; DATA SUBSETS; HYDRAULIC HEADS; KARSTIC AQUIFER; METEOROLOGICAL PARAMETERS; OBSERVATION WELLS; WORK SUPPORT;

EID: 80051598326     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.8044     Document Type: Article
Times cited : (17)

References (52)
  • 1
    • 84982010014 scopus 로고
    • Comparison of Resubstitution, Data Splitting, the Bootstrap, and the Jackknife as Methods for Estimating Validity Indexes of New Marker Tests-a Monte-Carlo Study
    • Abel U, Berger J. 1986. Comparison of Resubstitution, Data Splitting, the Bootstrap, and the Jackknife as Methods for Estimating Validity Indexes of New Marker Tests-a Monte-Carlo Study. Biometrical Journal 28: 899-908.
    • (1986) Biometrical Journal , vol.28 , pp. 899-908
    • Abel, U.1    Berger, J.2
  • 2
    • 49249108312 scopus 로고    scopus 로고
    • Neural network time series prediction of environmental variables in a small upland headwater in NE Scotland
    • Aitkenhead MJ, Cooper RJ. 2008. Neural network time series prediction of environmental variables in a small upland headwater in NE Scotland. Hydrological Processes 22: 3091-3101.
    • (2008) Hydrological Processes , vol.22 , pp. 3091-3101
    • Aitkenhead, M.J.1    Cooper, R.J.2
  • 3
    • 34548498867 scopus 로고    scopus 로고
    • Neural Networks for Real Time Catchment Flow Modeling and Prediction
    • Aqil M, Kita I, Yano A, Nishiyama S. 2007. Neural Networks for Real Time Catchment Flow Modeling and Prediction. Water Resources Management 21: 1781-1796.
    • (2007) Water Resources Management , vol.21 , pp. 1781-1796
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 5
    • 33748792555 scopus 로고    scopus 로고
    • On undermining the science?
    • Beven K. 2006. On undermining the science? Hydrological Processes 20: 3141-3146.
    • (2006) Hydrological Processes , vol.20 , pp. 3141-3146
    • Beven, K.1
  • 6
    • 50449091346 scopus 로고    scopus 로고
    • On doing better hydrological science
    • Beven K. 2008. On doing better hydrological science. Hydrological Processes 22: 3549-3553.
    • (2008) Hydrological Processes , vol.22 , pp. 3549-3553
    • Beven, K.1
  • 7
    • 0000485156 scopus 로고
    • Some Asymptotic Theory for the Bootstrap
    • Bickel PJ, Freedman DA. 1981. Some Asymptotic Theory for the Bootstrap. Annals of Statistics 9: 1196-1217.
    • (1981) Annals of Statistics , vol.9 , pp. 1196-1217
    • Bickel, P.J.1    Freedman, D.A.2
  • 9
    • 0025083488 scopus 로고
    • Confidence-Limits for Secondary Production Estimates-Application of the Bootstrap to the Increment Summation Method
    • Brey T. 1990. Confidence-Limits for Secondary Production Estimates-Application of the Bootstrap to the Increment Summation Method. Marine Biology 106: 503-508.
    • (1990) Marine Biology , vol.106 , pp. 503-508
    • Brey, T.1
  • 13
    • 0022251130 scopus 로고
    • Application of Bootstrap and Other Resampling Techniques-Evaluation of Classifier Performance
    • Chernick MR, Murthy VK, Nealy CD. 1985. Application of Bootstrap and Other Resampling Techniques-Evaluation of Classifier Performance. Pattern Recognition Letters 3: 167-178.
    • (1985) Pattern Recognition Letters , vol.3 , pp. 167-178
    • Chernick, M.R.1    Murthy, V.K.2    Nealy, C.D.3
  • 14
    • 0036519404 scopus 로고    scopus 로고
    • Bootstrap estimation of the mass transfer coefficient of a dissolving nonaqueous phase liquid pool in porous media
    • Chrysikopoulos CV, Hsuan P-Y, Fyrillas MM. 2002. Bootstrap estimation of the mass transfer coefficient of a dissolving nonaqueous phase liquid pool in porous media. Water Resources Research 38: 1026.
    • (2002) Water Resources Research , vol.38 , pp. 1026
    • Chrysikopoulos, C.V.1    Hsuan, P.-Y.2    Fyrillas, M.M.3
  • 16
    • 0031236128 scopus 로고    scopus 로고
    • Confidence intervals for ground-water models using linearization, likelihood, and bootstrap methods
    • Cooley RL. 1997. Confidence intervals for ground-water models using linearization, likelihood, and bootstrap methods. Ground Water 35: 869-880.
    • (1997) Ground Water , vol.35 , pp. 869-880
    • Cooley, R.L.1
  • 19
    • 0020748239 scopus 로고
    • Computer-Intensive Methods in Statistics
    • Diaconis P, Efron B. 1983. Computer-Intensive Methods in Statistics. Scientific American 248: 116.
    • (1983) Scientific American , vol.248 , pp. 116
    • Diaconis, P.1    Efron, B.2
  • 20
    • 80051590340 scopus 로고
    • 1977 Rietz Lecture-Bootstrap Methods-Another Look at the Jackknife. Annals of.
    • Efron B. 1979. 1977 Rietz Lecture-Bootstrap Methods-Another Look at the Jackknife. Annals of.
    • (1979)
    • Efron, B.1
  • 21
    • 0001284809 scopus 로고
    • Bootstrap Confidence-Intervals-Good or Bad
    • Efron B. 1988. Bootstrap Confidence-Intervals-Good or Bad. Psychological Bulletin 104: 293-296.
    • (1988) Psychological Bulletin , vol.104 , pp. 293-296
    • Efron, B.1
  • 25
  • 26
    • 0033473919 scopus 로고    scopus 로고
    • On the robustness of analytical and bootstrap corrections to score tests in regression models
    • Ferrari SLP, Cribari-Neto F. 1999. On the robustness of analytical and bootstrap corrections to score tests in regression models. Journal of Statistical Computation and Simulation 64: 177-191.
    • (1999) Journal of Statistical Computation and Simulation , vol.64 , pp. 177-191
    • Ferrari, S.L.P.1    Cribari-Neto, F.2
  • 27
    • 34548668162 scopus 로고    scopus 로고
    • Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria
    • Karterakis SM, Karatzas GP, Nikolos IK, Papadopoulou MP. 2007. Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria. Journal of Hydrology 342: 270-282.
    • (2007) Journal of Hydrology , vol.342 , pp. 270-282
    • Karterakis, S.M.1    Karatzas, G.P.2    Nikolos, I.K.3    Papadopoulou, M.P.4
  • 28
    • 34447337473 scopus 로고    scopus 로고
    • Evapotranspiration modelling from climatic data using a neural computing technique
    • Kisi O. 2007. Evapotranspiration modelling from climatic data using a neural computing technique. Hydrological Processes 21: 1925-1934.
    • (2007) Hydrological Processes , vol.21 , pp. 1925-1934
    • Kisi, O.1
  • 29
    • 48649099727 scopus 로고    scopus 로고
    • The potential of different ANN techniques in evapotranspiration modelling
    • Kisi O. 2008. The potential of different ANN techniques in evapotranspiration modelling. Hydrological Processes 22: 2449-2460.
    • (2008) Hydrological Processes , vol.22 , pp. 2449-2460
    • Kisi, O.1
  • 30
    • 42149163573 scopus 로고    scopus 로고
    • Modelling groundwater levels in an urban coastal aquifer using artificial neural networks
    • Krishna B, Satyaji RYR, Vijaya T. 2008. Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrological Processes 22: 1180-1188.
    • (2008) Hydrological Processes , vol.22 , pp. 1180-1188
    • Krishna, B.1    Satyaji, R.Y.R.2    Vijaya, T.3
  • 31
    • 0037868266 scopus 로고    scopus 로고
    • Evaluation and forecasting of daily groundwater outflow in a small chalky watershed
    • Lallahem S, Mania J. 2003. Evaluation and forecasting of daily groundwater outflow in a small chalky watershed. Hydrological Processes 17: 1561-1577.
    • (2003) Hydrological Processes , vol.17 , pp. 1561-1577
    • Lallahem, S.1    Mania, J.2
  • 32
    • 19744366167 scopus 로고    scopus 로고
    • On the use of neural networks to evaluate groundwater levels in fractured media
    • Lallahem S, Mania J, Hani A, Najjar Y. 2005. On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology 307: 92-111.
    • (2005) Journal of Hydrology , vol.307 , pp. 92-111
    • Lallahem, S.1    Mania, J.2    Hani, A.3    Najjar, Y.4
  • 33
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier HR, Dandy GC. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software 15: 101-124.
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 34
    • 80051582063 scopus 로고    scopus 로고
    • Prediction error of groundwater behavior by inverse modeling with bootstrap re-sampling method
    • In, Komatsu M, Nishigaki M, Kono I (eds). Taylor & Francis; -.
    • Masumoto K. 2003. Prediction error of groundwater behavior by inverse modeling with bootstrap re-sampling method. In Groundwater Engineering-Recent Advances, Komatsu M, Nishigaki M, Kono I (eds). Taylor & Francis; 579-584.
    • (2003) Groundwater Engineering-Recent Advances , pp. 579-584
    • Masumoto, K.1
  • 35
    • 34548279417 scopus 로고    scopus 로고
    • Differential diagnosis of CT focal liver lesions using texture features, feature selectéon and ensemble driven classifiers
    • Mougiakakou SG, Valavanis IK, Nikita A, Nikita KS. 2007. Differential diagnosis of CT focal liver lesions using texture features, feature selectéon and ensemble driven classifiers. Artificial Intelligence in Medicine 41: 25-37.
    • (2007) Artificial Intelligence in Medicine , vol.41 , pp. 25-37
    • Mougiakakou, S.G.1    Valavanis, I.K.2    Nikita, A.3    Nikita, K.S.4
  • 36
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach
    • Nayak P, Rao Y, Sudheer K. 2006. Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach. Water Resources Management 20: 77-90.
    • (2006) Water Resources Management , vol.20 , pp. 77-90
    • Nayak, P.1    Rao, Y.2    Sudheer, K.3
  • 37
    • 50449094792 scopus 로고    scopus 로고
    • Artificial neural networks as an alternative approach to groundwater numerical modelling and environmental design
    • Nikolos IK, Stergiadi M, Papadopoulou MP, Karatzas GP. 2008. Artificial neural networks as an alternative approach to groundwater numerical modelling and environmental design. Hydrological Processes 22: 3337-3348.
    • (2008) Hydrological Processes , vol.22 , pp. 3337-3348
    • Nikolos, I.K.1    Stergiadi, M.2    Papadopoulou, M.P.3    Karatzas, G.P.4
  • 39
    • 0343090467 scopus 로고    scopus 로고
    • Construction of confidence intervals for neural networks based on least squares estimation
    • Rivals I, Personnaz L. 2000. Construction of confidence intervals for neural networks based on least squares estimation. Neural Networks 13: 463-484.
    • (2000) Neural Networks , vol.13 , pp. 463-484
    • Rivals, I.1    Personnaz, L.2
  • 40
    • 34249898039 scopus 로고    scopus 로고
    • A simple neural network model for the determination of aquifer parameters
    • Samani N, Gohari-Moghadam M, Safavi AA. 2007. A simple neural network model for the determination of aquifer parameters. Journal of Hydrology 340: 1-11.
    • (2007) Journal of Hydrology , vol.340 , pp. 1-11
    • Samani, N.1    Gohari-Moghadam, M.2    Safavi, A.A.3
  • 41
    • 80051580581 scopus 로고
    • Springer-Verlag: New York.
    • Schervish MJ. 1995. Theory of statistics. Springer-Verlag: New York; 16, p. 702.
    • (1995) Theory of statistics , vol.16 , pp. 702
    • Schervish, M.J.1
  • 42
    • 35348983506 scopus 로고    scopus 로고
    • Accuracy estimation of detection of casting defects in X-ray images using some statistical techniques
    • Silva RR, Mery D. 2007. Accuracy estimation of detection of casting defects in X-ray images using some statistical techniques. Insight 49: 603-609.
    • (2007) Insight , vol.49 , pp. 603-609
    • Silva, R.R.1    Mery, D.2
  • 43
    • 0000824767 scopus 로고
    • On the Asymptotic Accuracy of Efrons Bootstrap
    • Singh K. 1981. On the Asymptotic Accuracy of Efrons Bootstrap. Annals of Statistics 9: 1187-1195.
    • (1981) Annals of Statistics , vol.9 , pp. 1187-1195
    • Singh, K.1
  • 45
    • 34547891511 scopus 로고    scopus 로고
    • An assessment of hydrogeological parameters on the karstic island of Dugi Otok, Croatia
    • Terzic J, Sumanovac F, Buljan R. 2007. An assessment of hydrogeological parameters on the karstic island of Dugi Otok, Croatia. Journal of Hydrology 343: 29-42.
    • (2007) Journal of Hydrology , vol.343 , pp. 29-42
    • Terzic, J.1    Sumanovac, F.2    Buljan, R.3
  • 46
    • 66249118677 scopus 로고    scopus 로고
    • Diversity and Distribution of Anaeromyxobacter Strains in a Uranium-Contaminated Subsurface Environment with a Nonuniform Groundwater Flow
    • Thomas SH, Padilla-Crespo E, Jardine PM, Sanford RA, Loffler FE. 2009. Diversity and Distribution of Anaeromyxobacter Strains in a Uranium-Contaminated Subsurface Environment with a Nonuniform Groundwater Flow. Applied and Environmental Microbiology 75: 3679-3687.
    • (2009) Applied and Environmental Microbiology , vol.75 , pp. 3679-3687
    • Thomas, S.H.1    Padilla-Crespo, E.2    Jardine, P.M.3    Sanford, R.A.4    Loffler, F.E.5
  • 47
    • 34250371695 scopus 로고    scopus 로고
    • Comment on: 'On undermining the science?' by Keith Beven
    • Todini E, Mantovan P. 2007. Comment on: 'On undermining the science?' by Keith Beven. Hydrological Processes 21: 1633-1638.
    • (2007) Hydrological Processes , vol.21 , pp. 1633-1638
    • Todini, E.1    Mantovan, P.2
  • 48
    • 70349251374 scopus 로고    scopus 로고
    • Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer's response
    • Trichakis IC, Nikolos IK, Karatzas GP. 2009. Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer's response. Hydrological Processes 23: 2956-2969.
    • (2009) Hydrological Processes , vol.23 , pp. 2956-2969
    • Trichakis, I.C.1    Nikolos, I.K.2    Karatzas, G.P.3
  • 49
    • 63049091994 scopus 로고    scopus 로고
    • Analysis of Survival Data Having Time-Dependent Covariates
    • Tsujitani M, Sakon M. 2009. Analysis of Survival Data Having Time-Dependent Covariates. Ieee Transactions on Neural Networks 20: 389-394.
    • (2009) Ieee Transactions on Neural Networks , vol.20 , pp. 389-394
    • Tsujitani, M.1    Sakon, M.2
  • 50
    • 34447548782 scopus 로고    scopus 로고
    • Prediction of flow fields and temperature distributions due to natural convection in a triangular enclosure using Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN)
    • Varol Y, Avci E, Koca A, Oztop HF. 2007. Prediction of flow fields and temperature distributions due to natural convection in a triangular enclosure using Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). International Communications in Heat and Mass Transfer 34: 887-896.
    • (2007) International Communications in Heat and Mass Transfer , vol.34 , pp. 887-896
    • Varol, Y.1    Avci, E.2    Koca, A.3    Oztop, H.F.4
  • 51
    • 0019296817 scopus 로고
    • Bootstrapping a Basic Inequality in the Analysis of Joint Action of 2 Drugs
    • Wahrendorf J, Brown CC. 1980. Bootstrapping a Basic Inequality in the Analysis of Joint Action of 2 Drugs. Biometrics 36: 653-657.
    • (1980) Biometrics , vol.36 , pp. 653-657
    • Wahrendorf, J.1    Brown, C.C.2
  • 52
    • 0035391531 scopus 로고    scopus 로고
    • Statistical inference, the bootstrap, and neural-network modelling with application to foreign exchange rates
    • White H, Racine J. 2001. Statistical inference, the bootstrap, and neural-network modelling with application to foreign exchange rates. IEEE Transactions on Neural Networks 12: 657-673.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 657-673
    • White, H.1    Racine, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.