-
1
-
-
78650045636
-
Stability analysis of multiplicative update algorithms and application to non-negative matrix factorization
-
Badeau, R., Bertin, N., & Vincent, E. (2010). Stability analysis of multiplicative update algorithms and application to non-negative matrix factorization. IEEE Transactions on Neural Networks, 21(12), 1869-1881.
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, Issue.12
, pp. 1869-1881
-
-
Badeau, R.1
Bertin, N.2
Vincent, E.3
-
2
-
-
0001640740
-
Robust and efficient estimation by minimising a density power divergence
-
Basu, A., Harris, I. R., Hjort, N. L., & Jones, M. C. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85(3), 549-559.
-
(1998)
Biometrika
, vol.85
, Issue.3
, pp. 549-559
-
-
Basu, A.1
Harris, I.R.2
Hjort, N.L.3
Jones, M.C.4
-
3
-
-
34547198396
-
Algorithms and applications for approximate nonnegative matrix factorization
-
Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., & Plemmons, R. J. (2007). Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis, 52(1), 155-173.
-
(2007)
Computational Statistics and Data Analysis
, vol.52
, Issue.1
, pp. 155-173
-
-
Berry, M.W.1
Browne, M.2
Langville, A.N.3
Pauca, V.P.4
Plemmons, R.J.5
-
4
-
-
70349202189
-
A tempering approach for Itakura-Saito non-negative matrix factorization
-
Piscataway, NJ: IEEE
-
Bertin, N., Févotte, C., & Badeau, R. (2009). A tempering approach for Itakura-Saito non-negative matrix factorization. With application to music transcription. In Proc. International Conference on Acoustics, Speech and Signal Processing (pp. 1545-1548). Piscataway, NJ: IEEE.
-
(2009)
With application to music transcription. Proc. International Conference on Acoustics, Speech and Signal Processing
, pp. 1545-1548
-
-
Bertin, N.1
Févotte, C.2
Badeau, R.3
-
5
-
-
1642529511
-
Metagenes and molecular pattern discovery using matrix factorization
-
Brunet, J.-P., Tamayo, P., Golub, T. R.,&Mesirov, J. P. (2004).Metagenes and molecular pattern discovery using matrix factorization. In Proceedings of the NationalAcademy of Sciences, 101, 4164-4169.
-
(2004)
Proceedings of the NationalAcademy of Sciences
, vol.101
, pp. 4164-4169
-
-
Brunet, J.-P.1
Tamayo, P.2
Golub, T.R.3
Mesirov, J.P.4
-
6
-
-
0033079094
-
Cross Burg entropy maximization and its application to ringing suppression in image reconstruction
-
Cao, Y., Eggermont, P. P. B., & Terebey, S. (1999). Cross Burg entropy maximization and its application to ringing suppression in image reconstruction. IEEE Transactions on Image Processing, 8(2), 286-292.
-
(1999)
IEEE Transactions on Image Processing
, vol.8
, Issue.2
, pp. 286-292
-
-
Cao, Y.1
Eggermont, P.P.B.2
Terebey, S.3
-
7
-
-
67650927380
-
Bayesian inference for nonnegative matrix factorisation models
-
doi:10.1155/2009/785152
-
Cemgil, A. T. (2009). Bayesian inference for nonnegative matrix factorisation models. Computational Intelligence and Neuroscience, 2009, 785152. doi:10.1155/2009/785152.
-
(2009)
Computational Intelligence and Neuroscience
, vol.2009
, pp. 785152
-
-
Cemgil, A.T.1
-
8
-
-
77956416620
-
Families of alpha- beta- and gamma-divergences: Flexible and robust measures of similarities
-
Cichocki, A., & Amari, S. (2010). Families of alpha- beta- and gamma-divergences: Flexible and robust measures of similarities. Entropy, 12(6), 1532-1568.
-
(2010)
Entropy
, vol.12
, Issue.6
, pp. 1532-1568
-
-
Cichocki, A.1
Amari, S.2
-
9
-
-
43249131130
-
Non-negativematrix factorization with α-divergence
-
Cichocki, A., Lee, H.,Kim, Y.-D.,&Choi, S. (2008). Non-negativematrix factorization with α-divergence. Pattern Recognition Letters, 29(9), 1433-1440.
-
(2008)
Pattern Recognition Letters
, vol.29
, Issue.9
, pp. 1433-1440
-
-
Cichocki, A.1
Lee, H.2
Kim, Y.-D.3
Choi, S.4
-
11
-
-
0022736170
-
An iterative image space reconstruction algorithm suitable for volume ECT
-
Daube-Witherspoon, M., & Muehllehner, G. (1986). An iterative image space reconstruction algorithm suitable for volume ECT. IEEE Transactions on Medical Imaging, 5(5), 61-66.
-
(1986)
IEEE Transactions on Medical Imaging
, vol.5
, Issue.5
, pp. 61-66
-
-
Daube-Witherspoon, M.1
Muehllehner, G.2
-
12
-
-
0027608225
-
On the relation between the ISRA and the EM algorithm for positron emission tomography
-
De Pierro, A. R. (1993). On the relation between the ISRA and the EM algorithm for positron emission tomography. IEEE Trans. Medical Imaging, 12(2), 328-333.
-
(1993)
IEEE Trans. Medical Imaging
, vol.12
, Issue.2
, pp. 328-333
-
-
De Pierro, A.R.1
-
14
-
-
84864031935
-
Generalized nonnegative matrix approximations with Bregman divergences
-
B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
-
Dhillon, I. S., & Sra, S. (2005). Generalized nonnegative matrix approximations with Bregman divergences. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19. Cambridge, MA: MIT Press.
-
(2005)
Advances in neural information processing systems
, pp. 19
-
-
Dhillon, I.S.1
Sra, S.2
-
15
-
-
84871617105
-
Convex and semi-nonnegative matrix factorizations
-
Ding, C. H. Q., Li, T., & Jordan, M. I. (2010). Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis andMachine Intelligence, 32(1), 45-55.
-
(2010)
IEEE Transactions on Pattern Analysis andMachine Intelligence
, vol.32
, Issue.1
, pp. 45-55
-
-
Ding, C.H.Q.1
Li, T.2
Jordan, M.I.3
-
16
-
-
49149085985
-
When does non-negative matrix factorization give a correct decomposition into parts?
-
S. Thrun, L. Saul, & B. Schölkopf (Eds.), Cambridge, MA: MIT Press
-
Donoho, D., & Stodden, V. (2004). When does non-negative matrix factorization give a correct decomposition into parts? In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems, 16. Cambridge, MA: MIT Press.
-
(2004)
Advances in neural information processing systems
, pp. 16
-
-
Donoho, D.1
Stodden, V.2
-
17
-
-
67650290519
-
Analysis of financial data using non-negative matrix factorization
-
Drakakis, K., Rickard, S., de Frein, R., & Cichocki, A. (2007). Analysis of financial data using non-negative matrix factorization. International Mathematical Forum, 3, 1853-1870.
-
(2007)
International Mathematical Forum
, vol.3
, pp. 1853-1870
-
-
Drakakis, K.1
Rickard, S.2
de Frein, R.3
Cichocki, A.4
-
19
-
-
33645702834
-
-
(Tech. Rep. Research Memo 802). Tokyo: Institute of Statistical Mathematics
-
Eguchi, S., & Kano, Y. (2001). Robustifying maximum likelihood estimation. (Tech. Rep. Research Memo 802). Tokyo: Institute of Statistical Mathematics.
-
(2001)
Robustifying maximum likelihood estimation
-
-
Eguchi, S.1
Kano, Y.2
-
20
-
-
63249085556
-
Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis
-
Févotte, C., Bertin, N., & Durrieu, J.-L. (2009). Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis. Neural Computation, 21(3), 793-830.
-
(2009)
Neural Computation
, vol.21
, Issue.3
, pp. 793-830
-
-
Févotte, C.1
Bertin, N.2
Durrieu, J.-L.3
-
21
-
-
84863769671
-
Nonnegative matrix factorisations as probabilistic inference in composite models
-
(EUSIPCO). EURASIP
-
Févotte, C.,&Cemgil, A. T. (2009). Nonnegative matrix factorisations as probabilistic inference in composite models. In Proc. 17th European Signal Processing Conference (EUSIPCO) (pp. 1913-1917). EURASIP.
-
(2009)
Proc. 17th European Signal Processing Conference
, pp. 1913-1917
-
-
Févotte, C.1
Cemgil, A.T.2
-
23
-
-
27744601822
-
Improving molecular cancer class discovery through sparse non-negative matrix factorization
-
Gao, Y., & Church, G. (2005). Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics, 21, 3970-3975.
-
(2005)
Bioinformatics
, vol.21
, pp. 3970-3975
-
-
Gao, Y.1
Church, G.2
-
25
-
-
48249087654
-
Ensemble non-negative matrix factorization methods for clustering protein-protein interactions
-
Greene, D.,Cagney, G.,Krogan, N.,&Cunningham, P. (2008). Ensemble non-negative matrix factorization methods for clustering protein-protein interactions. Bioinformatics, 24(15), 1722-1728.
-
(2008)
Bioinformatics
, vol.24
, Issue.15
, pp. 1722-1728
-
-
Greene, D.1
Cagney, G.2
Krogan, N.3
Cunningham, P.4
-
26
-
-
78049363390
-
NMF with time-frequency activations to model non stationary audio events
-
Piscataway, NJ: IEEE
-
Hennequin, R., Badeau, R.,&David, B. (2010). NMF with time-frequency activations to model non stationary audio events. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'10) (pp. 445-448). Piscataway, NJ: IEEE.
-
(2010)
Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'10)
, pp. 445-448
-
-
Hennequin, R.1
Badeau, R.2
David, B.3
-
29
-
-
70350175761
-
Fast projection-based methods for the least squares nonnegative matrix approximation problem
-
Kim, D., Sra, S., & Dhillon, I. S. (2008). Fast projection-based methods for the least squares nonnegative matrix approximation problem. Statistical Analysis and Data Mining, 1, 38-51.
-
(2008)
Statistical Analysis and Data Mining
, vol.1
, pp. 38-51
-
-
Kim, D.1
Sra, S.2
Dhillon, I.S.3
-
30
-
-
33847655586
-
A generalized divergence measure fon nonnegative matrix factorization
-
Kompass, R. (2007). A generalized divergence measure fon nonnegative matrix factorization. Neural Computation, 19(3), 780-791.
-
(2007)
Neural Computation
, vol.19
, Issue.3
, pp. 780-791
-
-
Kompass, R.1
-
31
-
-
0035336716
-
A general method to devise maximum-likelihood signal restoration multiplicative algorithms with nonnegativity constraints
-
Lantéri, H., Roche, M., Cuevas, O., & Aime, C. (2001). A general method to devise maximum-likelihood signal restoration multiplicative algorithms with nonnegativity constraints. Signal Processing, 81(5), 945-974.
-
(2001)
Signal Processing
, vol.81
, Issue.5
, pp. 945-974
-
-
Lantéri, H.1
Roche, M.2
Cuevas, O.3
Aime, C.4
-
32
-
-
84863789632
-
Split gradient method for nonnegative matrix factorization
-
EURASIP
-
Lantéri, H., Theys, C., Richard, C., & Févotte, C. (2010). Split gradient method for nonnegative matrix factorization. In Proc. 18th European Signal Processing Conference (EUSIPCO). EURASIP.
-
(2010)
Proc. 18th European Signal Processing Conference (EUSIPCO)
-
-
Lantéri, H.1
Theys, C.2
Richard, C.3
Févotte, C.4
-
33
-
-
47649123078
-
Theorems on positive data: On the uniqueness ofNMF
-
article 764206
-
Laurberg,H., Christensen, M., Plumbley, M. D., Hansen, L. K., & Jensen, S. H. (2008). Theorems on positive data: On the uniqueness ofNMF. Computational Intelligence and Neuroscience, article 764206.
-
(2008)
Computational Intelligence and Neuroscience
-
-
Laurberg, H.1
Christensen, M.2
Plumbley, M.D.3
Hansen, L.K.4
Jensen, S.H.5
-
34
-
-
84855204828
-
Computational auditory induction by missing-data non-negative matrix factorization
-
Le Roux, J., Kameoka, H.,Ono, N., de Cheveigné, A.,&Sagayama, S. (2008). Computational auditory induction by missing-data non-negative matrix factorization. In Proc. ISCA Workshop on Statistical and Perceptual Audition (SAPA) (pp. 1-6).
-
(2008)
Proc. ISCA Workshop on Statistical and Perceptual Audition (SAPA)
, pp. 1-6
-
-
Le Roux, J.1
Kameoka, H.2
Ono, N.3
de Cheveigné, A.4
Sagayama, S.5
-
35
-
-
0033592606
-
Learning the parts of objects with nonnegative matrix factorization
-
Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects with nonnegative matrix factorization. Nature, 401, 788-791.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
36
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
T. K. Leen, T. G. Dietterich, & K.-R. Müller (Eds.), Cambridge, MA: MIT Press
-
Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In T. K. Leen, T. G. Dietterich, & K.-R. Müller (Eds.), Advances in neural and information processing systems, 13 (pp. 556-562). Cambridge, MA: MIT Press.
-
(2001)
Advances in neural and information processing systems
, vol.13
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
37
-
-
36348966695
-
On the convergence of multiplicative update algorithms for nonnegative matrix factorization
-
Lin, C.-J. (2007a). On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Transactions on Neural Networks, 18, 1589-1596.
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, pp. 1589-1596
-
-
Lin, C.-J.1
-
38
-
-
35548969471
-
Projected gradient methods for nonnegative matrix factorization
-
Lin, C.-J. (2007b). Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19, 2756-2779.
-
(2007)
Neural Computation
, vol.19
, pp. 2756-2779
-
-
Lin, C.-J.1
-
39
-
-
0001050714
-
An iterative technique for the rectification of observed distributions
-
Lucy, L. B. (1974). An iterative technique for the rectification of observed distributions. Astronomical Journal, 79, 745-754.
-
(1974)
Astronomical Journal
, vol.79
, pp. 745-754
-
-
Lucy, L.B.1
-
40
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11, 10-60.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 10-60
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
41
-
-
0040673441
-
Robust blind source separation by beta-divergence
-
Minami, M., & Eguchi, S. (2002). Robust blind source separation by beta-divergence. Neural Computation, 14, 1859-1886.
-
(2002)
Neural Computation
, vol.14
, pp. 1859-1886
-
-
Minami, M.1
Eguchi, S.2
-
44
-
-
78449276257
-
Convergence-guaranteed multiplicative algorithms for non-negative matrix factorization with beta-divergence
-
Piscataway, NJ: IEEE
-
Nakano, M., Kameoka, H., Le Roux, J., Kitano, Y., Ono, N., & Sagayama, S. (2010). Convergence-guaranteed multiplicative algorithms for non-negative matrix factorization with beta-divergence. In Proc. IEEE International Workshop on Machine Learning for Signal Processing. Piscataway, NJ: IEEE.
-
(2010)
Proc. IEEE International Workshop on Machine Learning for Signal Processing
-
-
Nakano, M.1
Kameoka, H.2
Le Roux, J.3
Kitano, Y.4
Ono, N.5
Sagayama, S.6
-
46
-
-
55949112804
-
Discovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint
-
O'Grady, P. D., & Pearlmutter, B. A. (2008). Discovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint. Neurocomputing, 72(1-3), 88-101.
-
(2008)
Neurocomputing
, vol.72
, Issue.1-3
, pp. 88-101
-
-
O'Grady, P.D.1
Pearlmutter, B.A.2
-
47
-
-
33646682646
-
Nonnegative matrix factorization for spectral data analysis
-
Pauca, V. P., Piper, J., & Plemmons, R. J. (2006). Nonnegative matrix factorization for spectral data analysis. Linear Algebra and Its Applications, 416, 29-47.
-
(2006)
Linear Algebra and Its Applications
, vol.416
, pp. 29-47
-
-
Pauca, V.P.1
Piper, J.2
Plemmons, R.J.3
-
51
-
-
77950921969
-
Missing data imputation for spectral audio signals
-
Piscataway, NJ: IEEE Press
-
Smaragdis, P., Raj, B., & Shashanka, M. (2009). Missing data imputation for spectral audio signals. In IEEE International Workshop on Machine Learning for Signal Processing. Piscataway, NJ: IEEE Press.
-
(2009)
IEEE International Workshop on Machine Learning for Signal Processing
-
-
Smaragdis, P.1
Raj, B.2
Shashanka, M.3
-
52
-
-
0023312921
-
On the iterative image space reconstruction algorithm for ECT
-
Titterington, D.M. (1987). On the iterative image space reconstruction algorithm for ECT. IEEE Trans. Medical Imaging, 6(1), 52-56.
-
(1987)
IEEE Trans. Medical Imaging
, vol.6
, Issue.1
, pp. 52-56
-
-
Titterington, D.M.1
-
53
-
-
76949108729
-
Adaptive harmonic spectral decomposition for multiple pitch estimation
-
Vincent, E., Bertin, N., & Badeau, R. (2010). Adaptive harmonic spectral decomposition for multiple pitch estimation. IEEE Trans. Audio, Speech and Language Processing, 18, 528-537.
-
(2010)
IEEE Trans. Audio, Speech and Language Processing
, vol.18
, pp. 528-537
-
-
Vincent, E.1
Bertin, N.2
Badeau, R.3
|