메뉴 건너뛰기




Volumn 23, Issue 9, 2011, Pages 2421-2456

Algorithms for nonnegative matrix factorization with the β-divergence

Author keywords

[No Author keywords available]

Indexed keywords


EID: 80051594038     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00168     Document Type: Letter
Times cited : (650)

References (53)
  • 1
    • 78650045636 scopus 로고    scopus 로고
    • Stability analysis of multiplicative update algorithms and application to non-negative matrix factorization
    • Badeau, R., Bertin, N., & Vincent, E. (2010). Stability analysis of multiplicative update algorithms and application to non-negative matrix factorization. IEEE Transactions on Neural Networks, 21(12), 1869-1881.
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.12 , pp. 1869-1881
    • Badeau, R.1    Bertin, N.2    Vincent, E.3
  • 2
    • 0001640740 scopus 로고    scopus 로고
    • Robust and efficient estimation by minimising a density power divergence
    • Basu, A., Harris, I. R., Hjort, N. L., & Jones, M. C. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85(3), 549-559.
    • (1998) Biometrika , vol.85 , Issue.3 , pp. 549-559
    • Basu, A.1    Harris, I.R.2    Hjort, N.L.3    Jones, M.C.4
  • 6
    • 0033079094 scopus 로고    scopus 로고
    • Cross Burg entropy maximization and its application to ringing suppression in image reconstruction
    • Cao, Y., Eggermont, P. P. B., & Terebey, S. (1999). Cross Burg entropy maximization and its application to ringing suppression in image reconstruction. IEEE Transactions on Image Processing, 8(2), 286-292.
    • (1999) IEEE Transactions on Image Processing , vol.8 , Issue.2 , pp. 286-292
    • Cao, Y.1    Eggermont, P.P.B.2    Terebey, S.3
  • 7
    • 67650927380 scopus 로고    scopus 로고
    • Bayesian inference for nonnegative matrix factorisation models
    • doi:10.1155/2009/785152
    • Cemgil, A. T. (2009). Bayesian inference for nonnegative matrix factorisation models. Computational Intelligence and Neuroscience, 2009, 785152. doi:10.1155/2009/785152.
    • (2009) Computational Intelligence and Neuroscience , vol.2009 , pp. 785152
    • Cemgil, A.T.1
  • 8
    • 77956416620 scopus 로고    scopus 로고
    • Families of alpha- beta- and gamma-divergences: Flexible and robust measures of similarities
    • Cichocki, A., & Amari, S. (2010). Families of alpha- beta- and gamma-divergences: Flexible and robust measures of similarities. Entropy, 12(6), 1532-1568.
    • (2010) Entropy , vol.12 , Issue.6 , pp. 1532-1568
    • Cichocki, A.1    Amari, S.2
  • 9
    • 43249131130 scopus 로고    scopus 로고
    • Non-negativematrix factorization with α-divergence
    • Cichocki, A., Lee, H.,Kim, Y.-D.,&Choi, S. (2008). Non-negativematrix factorization with α-divergence. Pattern Recognition Letters, 29(9), 1433-1440.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.9 , pp. 1433-1440
    • Cichocki, A.1    Lee, H.2    Kim, Y.-D.3    Choi, S.4
  • 11
    • 0022736170 scopus 로고
    • An iterative image space reconstruction algorithm suitable for volume ECT
    • Daube-Witherspoon, M., & Muehllehner, G. (1986). An iterative image space reconstruction algorithm suitable for volume ECT. IEEE Transactions on Medical Imaging, 5(5), 61-66.
    • (1986) IEEE Transactions on Medical Imaging , vol.5 , Issue.5 , pp. 61-66
    • Daube-Witherspoon, M.1    Muehllehner, G.2
  • 12
    • 0027608225 scopus 로고
    • On the relation between the ISRA and the EM algorithm for positron emission tomography
    • De Pierro, A. R. (1993). On the relation between the ISRA and the EM algorithm for positron emission tomography. IEEE Trans. Medical Imaging, 12(2), 328-333.
    • (1993) IEEE Trans. Medical Imaging , vol.12 , Issue.2 , pp. 328-333
    • De Pierro, A.R.1
  • 13
    • 84873602321 scopus 로고    scopus 로고
    • Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence
    • Society for Music Information Retrieval
    • Dessein, A., Cont, A., & Lemaitre, G. (2010). Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence. In Proc. 11th International Society for Music Information Retrieval Conference. Society for Music Information Retrieval.
    • (2010) Proc. 11th International Society for Music Information Retrieval Conference
    • Dessein, A.1    Cont, A.2    Lemaitre, G.3
  • 14
    • 84864031935 scopus 로고    scopus 로고
    • Generalized nonnegative matrix approximations with Bregman divergences
    • B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
    • Dhillon, I. S., & Sra, S. (2005). Generalized nonnegative matrix approximations with Bregman divergences. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19. Cambridge, MA: MIT Press.
    • (2005) Advances in neural information processing systems , pp. 19
    • Dhillon, I.S.1    Sra, S.2
  • 16
    • 49149085985 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • S. Thrun, L. Saul, & B. Schölkopf (Eds.), Cambridge, MA: MIT Press
    • Donoho, D., & Stodden, V. (2004). When does non-negative matrix factorization give a correct decomposition into parts? In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems, 16. Cambridge, MA: MIT Press.
    • (2004) Advances in neural information processing systems , pp. 16
    • Donoho, D.1    Stodden, V.2
  • 19
    • 33645702834 scopus 로고    scopus 로고
    • (Tech. Rep. Research Memo 802). Tokyo: Institute of Statistical Mathematics
    • Eguchi, S., & Kano, Y. (2001). Robustifying maximum likelihood estimation. (Tech. Rep. Research Memo 802). Tokyo: Institute of Statistical Mathematics.
    • (2001) Robustifying maximum likelihood estimation
    • Eguchi, S.1    Kano, Y.2
  • 20
    • 63249085556 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis
    • Févotte, C., Bertin, N., & Durrieu, J.-L. (2009). Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis. Neural Computation, 21(3), 793-830.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 793-830
    • Févotte, C.1    Bertin, N.2    Durrieu, J.-L.3
  • 21
    • 84863769671 scopus 로고    scopus 로고
    • Nonnegative matrix factorisations as probabilistic inference in composite models
    • (EUSIPCO). EURASIP
    • Févotte, C.,&Cemgil, A. T. (2009). Nonnegative matrix factorisations as probabilistic inference in composite models. In Proc. 17th European Signal Processing Conference (EUSIPCO) (pp. 1913-1917). EURASIP.
    • (2009) Proc. 17th European Signal Processing Conference , pp. 1913-1917
    • Févotte, C.1    Cemgil, A.T.2
  • 23
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse non-negative matrix factorization
    • Gao, Y., & Church, G. (2005). Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics, 21, 3970-3975.
    • (2005) Bioinformatics , vol.21 , pp. 3970-3975
    • Gao, Y.1    Church, G.2
  • 25
    • 48249087654 scopus 로고    scopus 로고
    • Ensemble non-negative matrix factorization methods for clustering protein-protein interactions
    • Greene, D.,Cagney, G.,Krogan, N.,&Cunningham, P. (2008). Ensemble non-negative matrix factorization methods for clustering protein-protein interactions. Bioinformatics, 24(15), 1722-1728.
    • (2008) Bioinformatics , vol.24 , Issue.15 , pp. 1722-1728
    • Greene, D.1    Cagney, G.2    Krogan, N.3    Cunningham, P.4
  • 29
    • 70350175761 scopus 로고    scopus 로고
    • Fast projection-based methods for the least squares nonnegative matrix approximation problem
    • Kim, D., Sra, S., & Dhillon, I. S. (2008). Fast projection-based methods for the least squares nonnegative matrix approximation problem. Statistical Analysis and Data Mining, 1, 38-51.
    • (2008) Statistical Analysis and Data Mining , vol.1 , pp. 38-51
    • Kim, D.1    Sra, S.2    Dhillon, I.S.3
  • 30
    • 33847655586 scopus 로고    scopus 로고
    • A generalized divergence measure fon nonnegative matrix factorization
    • Kompass, R. (2007). A generalized divergence measure fon nonnegative matrix factorization. Neural Computation, 19(3), 780-791.
    • (2007) Neural Computation , vol.19 , Issue.3 , pp. 780-791
    • Kompass, R.1
  • 31
    • 0035336716 scopus 로고    scopus 로고
    • A general method to devise maximum-likelihood signal restoration multiplicative algorithms with nonnegativity constraints
    • Lantéri, H., Roche, M., Cuevas, O., & Aime, C. (2001). A general method to devise maximum-likelihood signal restoration multiplicative algorithms with nonnegativity constraints. Signal Processing, 81(5), 945-974.
    • (2001) Signal Processing , vol.81 , Issue.5 , pp. 945-974
    • Lantéri, H.1    Roche, M.2    Cuevas, O.3    Aime, C.4
  • 35
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects with nonnegative matrix factorization
    • Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects with nonnegative matrix factorization. Nature, 401, 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 36
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • T. K. Leen, T. G. Dietterich, & K.-R. Müller (Eds.), Cambridge, MA: MIT Press
    • Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In T. K. Leen, T. G. Dietterich, & K.-R. Müller (Eds.), Advances in neural and information processing systems, 13 (pp. 556-562). Cambridge, MA: MIT Press.
    • (2001) Advances in neural and information processing systems , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 37
    • 36348966695 scopus 로고    scopus 로고
    • On the convergence of multiplicative update algorithms for nonnegative matrix factorization
    • Lin, C.-J. (2007a). On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Transactions on Neural Networks, 18, 1589-1596.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , pp. 1589-1596
    • Lin, C.-J.1
  • 38
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • Lin, C.-J. (2007b). Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19, 2756-2779.
    • (2007) Neural Computation , vol.19 , pp. 2756-2779
    • Lin, C.-J.1
  • 39
    • 0001050714 scopus 로고
    • An iterative technique for the rectification of observed distributions
    • Lucy, L. B. (1974). An iterative technique for the rectification of observed distributions. Astronomical Journal, 79, 745-754.
    • (1974) Astronomical Journal , vol.79 , pp. 745-754
    • Lucy, L.B.1
  • 41
    • 0040673441 scopus 로고    scopus 로고
    • Robust blind source separation by beta-divergence
    • Minami, M., & Eguchi, S. (2002). Robust blind source separation by beta-divergence. Neural Computation, 14, 1859-1886.
    • (2002) Neural Computation , vol.14 , pp. 1859-1886
    • Minami, M.1    Eguchi, S.2
  • 46
    • 55949112804 scopus 로고    scopus 로고
    • Discovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint
    • O'Grady, P. D., & Pearlmutter, B. A. (2008). Discovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint. Neurocomputing, 72(1-3), 88-101.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 88-101
    • O'Grady, P.D.1    Pearlmutter, B.A.2
  • 52
    • 0023312921 scopus 로고
    • On the iterative image space reconstruction algorithm for ECT
    • Titterington, D.M. (1987). On the iterative image space reconstruction algorithm for ECT. IEEE Trans. Medical Imaging, 6(1), 52-56.
    • (1987) IEEE Trans. Medical Imaging , vol.6 , Issue.1 , pp. 52-56
    • Titterington, D.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.