-
1
-
-
0016355478
-
A new look at the statistical model identification
-
IEEE Transactions on
-
H. Akaike. A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19(6):716-723, 1974.
-
(1974)
Automatic Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
3
-
-
0642334046
-
A fast non-negativity-constrained least squares algorithm
-
R. Bro and S. de Jong. A fast non-negativity-constrained least squares algorithm. J. of Chemometrics, 11(5):393-401, 1997.
-
(1997)
J. of Chemometrics
, vol.11
, Issue.5
, pp. 393-401
-
-
Bro, R.1
De Jong, S.2
-
4
-
-
34547497161
-
Nonnegative tensor factorization using alpha and beta divergences
-
A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S. Amari. Nonnegative tensor factorization using alpha and beta divergences. ICASSP, 2007.
-
(2007)
ICASSP
-
-
Cichocki, A.1
Zdunek, R.2
Choi, S.3
Plemmons, R.4
Amari, S.5
-
7
-
-
33749255098
-
On the equivalence of nonnegative matrix factorization and spectral clustering
-
C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. Proc. SIAM Internat. Conf. Data Min. (SDM'05), pages 606-610, 2005.
-
(2005)
Proc. SIAM Internat. Conf. Data Min. (SDM'05)
, pp. 606-610
-
-
Ding, C.1
He, X.2
Simon, H.D.3
-
10
-
-
10944227316
-
Sparse coding and nmf
-
J. Eggert and E. Körner. Sparse coding and nmf. In Neural Networks, volume 4, pages 2529-2533, 2004.
-
(2004)
Neural Networks
, vol.4
, pp. 2529-2533
-
-
Eggert, J.1
Körner, E.2
-
11
-
-
84900510076
-
Non-negative matrix factorization with sparseness constraints
-
P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.O.1
-
12
-
-
84857841726
-
Non-negative sparse coding
-
Proceedings of the 2002 12th IEEE Workshop on
-
P.O. Hoyer. Non-negative sparse coding. Neural Networks for Signal Processing, 2002. Proceedings of the 2002 12th IEEE Workshop on, pages 557-565, 2002.
-
(2002)
Neural Networks for Signal Processing, 2002
, pp. 557-565
-
-
Hoyer, P.O.1
-
13
-
-
34250922831
-
The varimax criterion for analytic rotation in factor analysis
-
H. F. Kaiser. The varimax criterion for analytic rotation in factor analysis. Psychometrica, 23:187-200, 1958.
-
(1958)
Psychometrica
, vol.23
, pp. 187-200
-
-
Kaiser, H.F.1
-
14
-
-
70350175761
-
Fast projection-based methods for the least squares nonnegative matrix approximation problem
-
D. Kim, S. Sra, and I. S. Dhillon. Fast projection-based methods for the least squares nonnegative matrix approximation problem. Stat. Anal. Data Min., 1(1):38-51, 2008.
-
(2008)
Stat. Anal. Data Min.
, vol.1
, Issue.1
, pp. 38-51
-
-
Kim, D.1
Sra, S.2
Dhillon, I.S.3
-
15
-
-
47649123078
-
Theorems on positive data: On the uniqueness of nmf
-
H. Laurberg, M. G. Christensen, M. D. Plumbley, L. K. Hansen, and S. H. Jensen. Theorems on positive data: On the uniqueness of nmf. Computational Intelligence and Neuroscience, 2008.
-
(2008)
Computational Intelligence and Neuroscience
-
-
Laurberg, H.1
Christensen, M.G.2
Plumbley, M.D.3
Hansen, L.K.4
Jensen, S.H.5
-
16
-
-
84863742165
-
-
of Classics in Applied Mathematics. SIAM, Philadelphia, PA
-
C.L. Lawson and R.J. Hanson. Solving Least Squares Problems, volume 15 of Classics in Applied Mathematics. SIAM, Philadelphia, PA, 1995, 1974.
-
(1995)
Solving Least Squares Problems
, vol.15
, pp. 1974
-
-
Lawson, C.L.1
Hanson, R.J.2
-
17
-
-
0001093042
-
Algorithms for nonnegative matrix factorization
-
D. D. Lee and H. S. Seung. Algorithms for nonnegative matrix factorization. In NIPS, pages 556-562, 2000.
-
(2000)
NIPS
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
18
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
D.D. Lee and H.S. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401(6755):788-91, 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
19
-
-
35548969471
-
Projected gradient methods for non-negative matrix factorization
-
C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19:2756-2779, 2007.
-
(2007)
Neural Computation
, vol.19
, pp. 2756-2779
-
-
Lin, C.-J.1
-
20
-
-
0001025418
-
Bayesian interpolation
-
D. J. C. Mackay. Bayesian interpolation. Neural Computation, 4:415-447, 1992.
-
(1992)
Neural Computation
, vol.4
, pp. 415-447
-
-
Mackay, D.J.C.1
-
21
-
-
33947514540
-
Erpwavelab a toolbox for multi-channel analysis of time-frequency transformed event related potentials
-
M. Mørup, L.K. Hansen, and S. M. Arnfred. Erpwavelab a toolbox for multi-channel analysis of time-frequency transformed event related potentials. Journal of Neuroscience Methods, 161(361-368), 2007.
-
(2007)
Journal of Neuroscience Methods
, vol.161
, pp. 361-368
-
-
Mørup, M.1
Hansen, L.K.2
Arnfred, S.M.3
-
22
-
-
48249100881
-
Algorithms for sparse non-negative tucker
-
M. Mørup, L.K. Hansen, and S. M. Arnfred. Algorithms for sparse non-negative tucker. Neural Computation, 20(8):2112-2131, 2008
-
(2008)
Neural Computation
, vol.20
, Issue.8
, pp. 2112-2131
-
-
Mørup, M.1
Hansen, L.K.2
Arnfred, S.M.3
-
24
-
-
84863774108
-
Automatic relevance determination for multi-way models
-
accepted for publication
-
M. Mørup and L. K. Hansen. Automatic relevance determination for multi-way models. accepted for publication, Journal of Chemometrics, 22:1-12, 2009.
-
(2009)
Journal of Chemometrics
, vol.22
, pp. 1-12
-
-
Mørup, M.1
Hansen, L.K.2
-
25
-
-
0028561099
-
Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values
-
P Paatero and U Tapper. Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2):111-126, 1994.
-
(1994)
Environmetrics
, vol.5
, Issue.2
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
26
-
-
14344253847
-
Predictive automatic relevance determination by expectation propagation
-
New York, NY, USA ACM
-
Y. Qi, T. P. Minka, R. W. Picard, and Z. Ghahramani. Predictive automatic relevance determination by expectation propagation. In Proceedings of the twenty-first international conference on Machine learning, page 85, New York, NY, USA, 2004. ACM.
-
(2004)
Proceedings of the Twenty-first International Conference on Machine Learning
, pp. 85
-
-
Qi, Y.1
Minka, T.P.2
Picard, R.W.3
Ghahramani, Z.4
-
28
-
-
84863494643
-
Bayesian non-negative matrix factorization
-
accepted for publication
-
M. N. Schmidt, O. Winther, and L. K. Hansen. Bayesian non-negative matrix factorization. accepted for publication ICA 2009.
-
ICA 2009
-
-
Schmidt, M.N.1
Winther, O.2
Hansen, L.K.3
-
29
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461-464, 1978.
-
(1978)
Annals of Statistics
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
|