메뉴 건너뛰기




Volumn 9, Issue 2, 1996, Pages 109-119

Optimization of feedforward neural networks

Author keywords

Feedforward neural networks; Parametric nets; Soft computing

Indexed keywords

BACKPROPAGATION; ERRORS; GENETIC ALGORITHMS; LEARNING SYSTEMS; OPTIMIZATION; OSCILLATIONS;

EID: 0030121137     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/0952-1976(95)00001-1     Document Type: Article
Times cited : (25)

References (18)
  • 3
    • 0003578240 scopus 로고
    • An empirical study of learning speed in back-propagation networks
    • CMU
    • Fahlman S. E. An empirical study of learning speed in back-propagation networks. Technical Report CMU-CS-88-162, CMU (1988).
    • (1988) Technical Report CMU-CS-88-162
    • Fahlman, S.E.1
  • 5
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M. and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366 (1989).
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 7
    • 0022559425 scopus 로고
    • Optimization of control parameters for genetic algorithms
    • Grefenstette J. J. Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man, Cyber. SMC-16, 122-128 (1986).
    • (1986) IEEE Trans. Syst. Man, Cyber. , vol.SMC-16 , pp. 122-128
    • Grefenstette, J.J.1
  • 9
    • 0015951617 scopus 로고
    • The existence of persistent states in the brain
    • Little W. A. The existence of persistent states in the brain. Math. Biosci. 19, 101 (1974).
    • (1974) Math. Biosci. , vol.19 , pp. 101
    • Little, W.A.1
  • 10
    • 0017976731 scopus 로고
    • Analytic study of the memory capacity of a neural network
    • Little W. A. and Shaw G. L. Analytic study of the memory capacity of a neural network. Math. Biosci. 39, 281 (1978).
    • (1978) Math. Biosci. , vol.39 , pp. 281
    • Little, W.A.1    Shaw, G.L.2
  • 13
    • 84947418173 scopus 로고
    • The influence of the sigmoid function parameters on the speed of backpropagation learning
    • (Edited by Mira and Sandoval), Springer, Berlin
    • Han J. and Moraga C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In From Natural to Artificial Neural Computation (Edited by Mira and Sandoval), pp. 195-201. Springer, Berlin (1995).
    • (1995) From Natural to Artificial Neural Computation , pp. 195-201
    • Han, J.1    Moraga, C.2
  • 14
    • 30244574958 scopus 로고
    • Optimization of dynamical parameters for neural networks with sigmoid activation functions
    • Han J., Sinne S. and Moraga C. Optimization of dynamical parameters for neural networks with sigmoid activation functions. Proc. 14th Int. Congress on Cybernetics (1995).
    • (1995) Proc. 14th Int. Congress on Cybernetics
    • Han, J.1    Sinne, S.2    Moraga, C.3
  • 15
    • 30244533559 scopus 로고
    • Fast backpropagation using modified sigmoidal functions
    • Springer, Berlin
    • Morabito F. C. Fast backpropagation using modified sigmoidal functions. Proc. Int. Conf. on Artificial Neural Networks, pp. 537-540. Springer, Berlin (1994).
    • (1994) Proc. Int. Conf. on Artificial Neural Networks , pp. 537-540
    • Morabito, F.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.