메뉴 건너뛰기




Volumn 43, Issue 9, 2010, Pages 3151-3161

Transfer estimation of evolving class priors in data stream classification

Author keywords

Concept drift; Prior estimation; Transfer learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA COMMUNICATION SYSTEMS; DATA MINING;

EID: 79960376903     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2010.03.021     Document Type: Article
Times cited : (26)

References (39)
  • 1
    • 24344498330 scopus 로고    scopus 로고
    • Mining data streams: A review
    • DOI 10.1145/1083784.1083789
    • M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining data streams: a review, ACM Sigmod Record 34 (2) (2005) 18-26. (Pubitemid 41260006)
    • (2005) SIGMOD Record , vol.34 , Issue.2 , pp. 18-26
    • Gaber, M.M.1    Zaslavsky, A.2    Krishnaswamy, S.3
  • 3
    • 42749092337 scopus 로고    scopus 로고
    • Classification on Data with Biased Class Distribution
    • Machine Learning: ECML 2001
    • S. Vucetic, Z. Obradovic, Classification on data with biased class distribution, in: ECML, 2001, pp. 527-538. (Pubitemid 33331097)
    • (2001) Lecture Notes in Computer Science , Issue.2167 , pp. 527-538
    • Vucetic, S.1    Obradovic, Z.2
  • 4
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz, The class imbalance problem: a systematic study, Intelligent Data Analysis 6 (5) (2002) 429-449.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1
  • 6
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • G. Batista, R. Prati, M. Monard, A study of the behavior of several methods for balancing machine learning training data, SIGKDD Explorations 6 (1) (2004) 20-29.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.1    Prati, R.2    Monard, M.3
  • 8
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. Yu, J. Han, Mining concept-drifting data streams using ensemble classifiers, in: KDD, 2003, pp. 226-235.
    • (2003) KDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.3    Han, J.4
  • 9
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • December
    • J. Kolter, M. Maloof, Dynamic weighted majority: an ensemble method for drifting concepts, The Journal of Machine Learning Research 8 (December) (2007) 2755-2790.
    • (2007) The Journal of Machine Learning Research , vol.8 , pp. 2755-2790
    • Kolter, J.1    Maloof, M.2
  • 10
    • 14644423267 scopus 로고    scopus 로고
    • Relevant data expansion for learning concept drift from sparsely labeled data
    • DOI 10.1109/TKDE.2005.48
    • D. Widyantoro, J. Yen, Relevant data expansion for learning concept drift from sparsely labeled data, IEEE Transactions on Knowledge and Data Engineering 17 (3) (2005) 401-412. (Pubitemid 40320171)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 401-412
    • Widyantoro, D.H.1    Yen, J.2
  • 12
    • 33750352833 scopus 로고    scopus 로고
    • Tackling concept drift by temporal inductive transfer
    • G. Forman, Tackling concept drift by temporal inductive transfer, in: SIGIR, 2006, pp. 252-259.
    • (2006) SIGIR , pp. 252-259
    • Forman, G.1
  • 13
    • 65449158881 scopus 로고    scopus 로고
    • Categorizing and mining concept drifting data streams
    • P. Zhang, X. Zhu, Y. Shi, Categorizing and mining concept drifting data streams, in: KDD, 2008, pp. 812-820.
    • (2008) KDD , pp. 812-820
    • Zhang, P.1    Zhu, X.2    Shi, Y.3
  • 14
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Computer Sciences Department, University of Wisconsin-Madison, Wisconsin, USA
    • X. Zhu, Semi-supervised learning literature survey, Technical Report 1530, Computer Sciences Department, University of Wisconsin-Madison, Wisconsin, USA, 2005.
    • (2005) Technical Report 1530
    • Zhu, X.1
  • 16
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims, Transductive inference for text classification using support vector machines, in: ICML, 1999, pp. 200-209.
    • (1999) ICML , pp. 200-209
    • Joachims, T.1
  • 18
    • 0039051529 scopus 로고
    • On the estimation of mixing distributions
    • D. Boes, On the estimation of mixing distributions, The Annals of Mathematical Statistics 37 (1) (1966) 177-188.
    • (1966) The Annals of Mathematical Statistics , vol.37 , Issue.1 , pp. 177-188
    • Boes, D.1
  • 19
    • 0017470719 scopus 로고
    • Recursive estimation of prior probabilities using a mixture
    • D. Kazakos, Recursive estimation of prior probabilities using a mixture, IEEE Transactions on Information Theory 23 (2) (1977) 203-211.
    • (1977) IEEE Transactions on Information Theory , vol.23 , Issue.2 , pp. 203-211
    • Kazakos, D.1
  • 20
    • 0026153746 scopus 로고
    • Asymptotically efficient estimation of prior probabilities in multiclass finite mixtures
    • DOI 10.1109/18.79904
    • G. Dattatreya, L. Kanal, Asymptotically efficient estimation of prior probabilities in multiclass finite mixtures, IEEE Transactions on Information Theory 37 (3) (1991) 482-489. (Pubitemid 21646303)
    • (1991) IEEE Transactions on Information Theory , vol.37 , Issue.3 PART I , pp. 482-489
    • Dattatreya, G.R.1    Kanal Laveen, N.2
  • 23
    • 0036134369 scopus 로고    scopus 로고
    • Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
    • M. Saerens, P. Latinne, C. Decaestecker, Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure, Neural Computation 14 (1) (2002) 21-41.
    • (2002) Neural Computation , vol.14 , Issue.1 , pp. 21-41
    • Saerens, M.1    Latinne, P.2    Decaestecker, C.3
  • 24
    • 4744367074 scopus 로고    scopus 로고
    • Adjusting the outputs of a classifier to new a priori probabilities may significantly improve classification accuracy: Evidence from a multi-class problem in remote sensing
    • P. Latinne, M. Saerens, C. Decaestecker, Adjusting the outputs of a classifier to new a priori probabilities may significantly improve classification accuracy: evidence from a multi-class problem in remote sensing, in: ICML, 2001, pp. 298-305.
    • (2001) ICML , pp. 298-305
    • Latinne, P.1    Saerens, M.2    Decaestecker, C.3
  • 25
    • 33847690219 scopus 로고    scopus 로고
    • Transductive methods for the distributed ensemble classification problem
    • D. Miller, S. Pal, Transductive methods for the distributed ensemble classification problem, Neural Computation 19 (3) (2007) 856-884.
    • (2007) Neural Computation , vol.19 , Issue.3 , pp. 856-884
    • Miller, D.1    Pal, S.2
  • 26
    • 42749097891 scopus 로고    scopus 로고
    • Non-stationary data sequence classification using online class priors estimation
    • C. Yang, J. Zhou, Non-stationary data sequence classification using online class priors estimation, Pattern Recognition 41 (8) (2008) 2656-2664.
    • (2008) Pattern Recognition , vol.41 , Issue.8 , pp. 2656-2664
    • Yang, C.1    Zhou, J.2
  • 27
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • S. Raudys, A. Jain, Small sample size effects in statistical pattern recognition: recommendations for practitioners, IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (3) (1991) 252-264.
    • (1991) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.1    Jain, A.2
  • 28
    • 70350633261 scopus 로고    scopus 로고
    • Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China
    • S. Pan, Q. Yang, A Survey on Transfer Learning, Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China, 2008.
    • (2008) A Survey on Transfer Learning
    • Pan, S.1    Yang, Q.2
  • 29
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes
    • A. Ng, M. Jordan, On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes, in: NIPS, 2002, pp. 841-848.
    • (2002) NIPS , pp. 841-848
    • Ng, A.1    Jordan, M.2
  • 32
    • 34547972773 scopus 로고    scopus 로고
    • Boosting for transfer learning
    • W. Dai, Q. Yang, G. Xue, Y. Yu, Boosting for transfer learning, in: ICML, 2007, pp. 193-200.
    • (2007) ICML , pp. 193-200
    • Dai, W.1    Yang, Q.2    Xue, G.3    Yu, Y.4
  • 33
    • 34547971961 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, A. Ng, Self-taught learning: transfer learning from unlabeled data, in: ICML, 2007, pp. 759-766.
    • (2007) ICML , pp. 759-766
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.5
  • 34
    • 84863349934 scopus 로고    scopus 로고
    • Translated learning: Transfer learning across different feature spaces
    • W. Dai, Y. Chen, G. Xue, Q. Yang, Y. Yu, Translated learning: transfer learning across different feature spaces, in: NIPS, 2008, pp. 353-360.
    • (2008) NIPS , pp. 353-360
    • Dai, W.1    Chen, Y.2    Xue, G.3    Yang, Q.4    Yu, Y.5
  • 35
    • 85161964516 scopus 로고    scopus 로고
    • Direct importance estimation with model selection and its application to covariate shift adaptation
    • M. Sugiyama, S. Nakajima, H. Kashima, P. von Bunau, M. Kawanabe, Direct importance estimation with model selection and its application to covariate shift adaptation, in: NIPS, 2008, pp. 1433-1440.
    • (2008) NIPS , pp. 1433-1440
    • Sugiyama, M.1    Nakajima, S.2    Kashima, H.3    Von Bunau, P.4    Kawanabe, M.5
  • 36
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • H. Shimodaira, Improving predictive inference under covariate shift by weighting the log-likelihood function, Journal of Statistical Planning and Inference 90 (2) (2000) 227-244.
    • (2000) Journal of Statistical Planning and Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 37
    • 0000489740 scopus 로고
    • Information-type measures of difference of probability distributions and indirect observations
    • I. Csiszar, Information-type measures of difference of probability distributions and indirect observations, Studia Scientiarum Mathematicarum Hungarica 2 (1967) 299-318.
    • (1967) Studia Scientiarum Mathematicarum Hungarica , vol.2 , pp. 299-318
    • Csiszar, I.1
  • 38
    • 0025952277 scopus 로고
    • Divergence measures based on the Shannon entropy
    • J. Lin, Divergence measures based on the Shannon entropy, IEEE Transactions on Information Theory 37 (1) (1991) 145-151.
    • (1991) IEEE Transactions on Information Theory , vol.37 , Issue.1 , pp. 145-151
    • Lin, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.