메뉴 건너뛰기




Volumn 4005 LNAI, Issue , 2006, Pages 35-49

Stable transductive learning

Author keywords

[No Author keywords available]

Indexed keywords

FUNCTION EVALUATION; INFORMATION ANALYSIS; LEARNING ALGORITHMS; PROBABILITY; SENSITIVITY ANALYSIS;

EID: 33746089533     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11776420_6     Document Type: Conference Paper
Times cited : (33)

References (21)
  • 1
    • 84972574511 scopus 로고
    • Weighted sums of certain dependent random variables
    • K. Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical Journal, 19:357-367, 1967.
    • (1967) Tohoku Mathematical Journal , vol.19 , pp. 357-367
    • Azuma, K.1
  • 2
    • 9444289383 scopus 로고    scopus 로고
    • Regularization and semi-supervised learning on large graphs
    • M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large graphs. In COLT, pages 624-638, 2004.
    • (2004) COLT , pp. 624-638
    • Belkin, M.1    Matveeva, I.2    Niyogi, P.3
  • 3
    • 9444288055 scopus 로고    scopus 로고
    • PAC-MDL bounds
    • A. Blum and J. Langford. PAC-MDL Bounds. In COLT, pages 344-357, 2003.
    • (2003) COLT , pp. 344-357
    • Blum, A.1    Langford, J.2
  • 5
    • 24344495921 scopus 로고    scopus 로고
    • Explicit learning curves for transduction and application to clustering and compression algorithms
    • P. Derbeko, R. El-Yaniv, and R. Meir. Explicit learning curves for transduction and application to clustering and compression algorithms. Journal of Artificial Intelligence Research, 22:117-142, 2004.
    • (2004) Journal of Artificial Intelligence Research , vol.22 , pp. 117-142
    • Derbeko, P.1    El-Yaniv, R.2    Meir, R.3
  • 9
    • 33646415556 scopus 로고    scopus 로고
    • Stability of unstable learning algorithms
    • Los Alamos National Laboratory
    • D. Hush, C. Scovel, and I. Steinwart. Stability of unstable learning algorithms. Technical Report LA-UR-03-4845, Los Alamos National Laboratory, 2003.
    • (2003) Technical Report , vol.LA-UR-03-4845
    • Hush, D.1    Scovel, C.2    Steinwart, I.3
  • 10
    • 0033566418 scopus 로고    scopus 로고
    • Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
    • M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. Neural Computation, 11(6):1427-1453, 1999.
    • (1999) Neural Computation , vol.11 , Issue.6 , pp. 1427-1453
    • Kearns, M.1    Ron, D.2
  • 11
    • 33746063560 scopus 로고    scopus 로고
    • Extensions to McDiarmid's inequality when differences are bounded with high probability
    • University of Chicago
    • S. Kutin. Extensions to McDiarmid's inequality when differences are bounded with high probability. Technical Report TR-2002-04, University of Chicago, 2002.
    • (2002) Technical Report , vol.TR-2002-04
    • Kutin, S.1
  • 12
    • 33746041669 scopus 로고    scopus 로고
    • Almost-everywhere algorithmic stability and generalization error
    • S. Kutin and P. Niyogi. Almost-everywhere algorithmic stability and generalization error. In UAI, pages 275-282, 2002.
    • (2002) UAI , pp. 275-282
    • Kutin, S.1    Niyogi, P.2
  • 13
    • 0038609707 scopus 로고    scopus 로고
    • Number 89 in Mathematical Surveys and Monographs. American Mathematical Society
    • M. Ledoux. The concentration of measure phenomenon. Number 89 in Mathematical Surveys and Monographs. American Mathematical Society, 2001.
    • (2001) The Concentration of Measure Phenomenon
    • Ledoux, M.1
  • 14
    • 0032090807 scopus 로고    scopus 로고
    • Approximate medians and other quantiles in one pass and with limited memory
    • G.S. Manku, S. Rajagopalan, and B.G. Lindsay. Approximate medians and other quantiles in one pass and with limited memory. In SIGMOD, volume 28, pages 426-435, 1998.
    • (1998) SIGMOD , vol.28 , pp. 426-435
    • Manku, G.S.1    Rajagopalan, S.2    Lindsay, B.G.3
  • 15
    • 1842515655 scopus 로고    scopus 로고
    • Statistical learning: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization
    • MIT
    • S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Statistical learning: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization. Technical Report AI Memo 2002-024, MIT, 2004.
    • (2004) Technical Report AI Memo 2002-024
    • Mukherjee, S.1    Niyogi, P.2    Poggio, T.3    Rifkin, R.4
  • 21
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J.D. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, pages 912-919, 2003.
    • (2003) ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.