메뉴 건너뛰기




Volumn 12, Issue 2, 2006, Pages 189-209

Fuzzy adaptive logic networks as hybrid models of quantitative software engineering

Author keywords

Bagging and boosting; Ensemble classifier; Fuzzy neurons; Learning; Logic and geometry; Neurofuzzy systems; Pattern recognition; Perceptron; Software measure and software quality; Softwaze engineering

Indexed keywords


EID: 33645514604     PISSN: 10798587     EISSN: 2326005X     Source Type: Journal    
DOI: 10.1080/10798587.2006.10642925     Document Type: Article
Times cited : (13)

References (39)
  • 1
    • 85025312430 scopus 로고
    • W. W. Armstrong, C. Chu, and M. M. Thomas, Using adaptive logic networks to predict machine failure, Proceedings World Congress on Neural Networks, Washington, DC, vol. II, pp. 80–83, 1995.
    • (1995) Washington, DC , vol.2 , pp. 80-83
  • 2
    • 0000415527 scopus 로고    scopus 로고
    • Relation between VGA-classifier and MLP: Determination of network architecture
    • S. Bandyopadhyay and S. K. Pal, Relation between VGA-classifier and MLP:determination of network architecture, Fundamenta Informaticae, vol. 37, no. 1–2, pp. 177–199, 1999.
    • (1999) Fundamenta Informaticae, vol. 37, no. 1–2 , pp. 177-199
    • Bandyopadhyay, S.1    Pal, S.K.2
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
    • E. Bauer and R. Kohavi, An Empirical Comparison of Voting Classification Algorithms:Bagging, Boosting, and Variants, Machine Learning, vol. 36, pp. 105–142, 1999.
    • (1999) Machine Learning , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0003619255 scopus 로고    scopus 로고
    • Bias, Variance and Arcing Classifiers
    • Statistics Department, University of, California, Berkeley
    • L. Breiman, Bias, Variance and Arcing Classifiers. Technical Report 460, Statistics Department, University of California, Berkeley, 1996.
    • (1996) Technical Report , vol.460
    • Breiman, L.1
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization
    • T. G. Dietterich, An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees:Bagging, Boosting, and Randomization, Machine Learning, vol. 40, no. 2, pp. 139157, 2000.
    • Machine Learning, vol. 40, no. 2, pp.
    • Dietterich, T.G.1
  • 7
    • 85025374002 scopus 로고    scopus 로고
    • W. Duch and R. Adamczak, Statistical methods for construction of neural networks, Proceedings International Conference on Neural Information Processing, ICONIP’98, Kitakyushu, Japan, vol. 2, pp. 629–642, 1998.
    • (1998) Kitakyushu, Japan , vol.2 , pp. 629-642
  • 10
    • 0034187078 scopus 로고    scopus 로고
    • General fuzzy Min-Max neural network for clustering and classification
    • B. Gabrys and A. Bargiela, General fuzzy Min-Max neural network for clustering and classification, IEEE Transactions on Neural Networks, vol. 11, no. 3, pp. 769–783, 2000.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.3 , pp. 769-783
    • Gabrys, B.1    Bargiela, A.2
  • 13
    • 58049186832 scopus 로고
    • Neural Networks: A Comprehensive Foundation
    • S. Haykin, Neural Networks:a Comprehensive Foundation, Macmillan College Publ, 1994.
    • (1994) Macmillan College Publ
    • Haykin, S.1
  • 14
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, Selecting fuzzy if-then rules for classification problems using genetic algorithms, IEEE Transactions on Fuzzy Systems, vol. 3, no. 3, pp. 260–270, 1995.
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , Issue.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 16
    • 0000262562 scopus 로고
    • Hierarchical mixture of experts and the EM algorithm
    • M. I. Jordan and R. A. Jacobs, Hierarchical mixture of experts and the EM algorithm, Neural Computation, vol. 6, pp. 181–214, 1994.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 17
    • 0031347022 scopus 로고    scopus 로고
    • An Empirical Evaluation of Bagging and Boosting, in Proceedings of the fourteenth International Conference on Artifzcial Intelligence
    • Cambridge: MA. AAAI Press/MIT Press
    • R. Maclin and D. Opitz, An Empirical Evaluation of Bagging and Boosting, in Proceedings of the fourteenth International Conference on Artifzcial Intelligence, pp. 546–551, Cambridge, MA. AAAI Press/MIT Press, 1997.
    • (1997) Pp , vol.546-551
    • Maclin, R.1    Opitz, D.2
  • 23
    • 0032122726 scopus 로고    scopus 로고
    • Conditional fuzzy clustering in the design of radial basis function neural networks
    • W. Pedrycz, Conditional fuzzy clustering in the design of radial basis function neural networks, IEEE Transactions on Neural Networks, vol. 9, pp. 601–612, 1998.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , pp. 601-612
    • Pedrycz, W.1
  • 24
    • 0036532520 scopus 로고    scopus 로고
    • Granular clustering: A granular signature of data, IEEE Transactions on Systems
    • W. Pedrycz and A. Bargiela, Granular clustering:a granular signature of data, IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 32, no. 2, pp. 212–224, 2002.
    • (2002) Man, and Cybernetics Part B , vol.32 , Issue.2 , pp. 212-224
    • Pedrycz, W.1    Bargiela, A.2
  • 25
    • 85025308915 scopus 로고    scopus 로고
    • W. Pedrycz, A. Breuer, and N. J. Pizzi, Fuzzy adaptive logic networks: at the junction of geometry and logic, Pattern Recognition, 2004 (submitted for review)
    • W. Pedrycz, A. Breuer, and N. J. Pizzi, Fuzzy adaptive logic networks:at the junction of geometry and logic, Pattern Recognition, 2004 (submitted for review).
  • 26
    • 85025344456 scopus 로고    scopus 로고
    • W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets, Cambridge, MIT Press, Cambridge, MA
    • W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets, Cambridge, MIT Press, Cambridge, MA.
  • 29
    • 85025329202 scopus 로고    scopus 로고
    • Bagging, Boosting, and C4.5, in Thirteenth National Conference on Artifzcial Intelligence, (Cambridge), pp. 163–175
    • J. Quinlan, Bagging, Boosting, and C4.5, in Thirteenth National Conference on Artifzcial Intelligence, (Cambridge), pp. 163–175, AAAI Press/MIT Press, 1996.
    • (1996) AAAI Press/MIT Press
    • Quinlan, J.1
  • 30
    • 84898770368 scopus 로고    scopus 로고
    • Structural adaptation in mixture of experts
    • V. Ramurthi and J. Ghosh, Structural adaptation in mixture of experts, Proc. of ICPR, pp. 704–708, 1996.
    • (1996) Proc. of ICPR , pp. 704-708
    • Ramurthi, V.1    Ghosh, J.2
  • 32
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire, The strength of weak learnability, Machine Learning, vol. 5, no. 2, pp. 197–227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 33
    • 0035792030 scopus 로고    scopus 로고
    • B. von Schmidt and F. Klawonn, Construction of a Multilayer Perceptron for a Piecewise Linearly Separable Classification Problem, Proc. IFSA /NAFIPS 2001, paper ID 231
    • B. von Schmidt and F. Klawonn, Construction of a Multilayer Perceptron for a Piecewise Linearly Separable Classification Problem, Proc. IFSA /NAFIPS 2001, paper ID 231.
  • 36
    • 85040239438 scopus 로고    scopus 로고
    • Granularity and specificity in fuzzy function approximation, in Proc
    • T. A. Sudkamp and R. J. Hammell II, Granularity and specificity in fuzzy function approximation, in Proc. NAFIPS-98, pp. 105–109, 1998.
    • (1998) NAFIPS-98 , pp. 105-109
    • Sudkamp, T.A.1    Hammell, R.J.2
  • 38
    • 0030142764 scopus 로고    scopus 로고
    • Fuzzy logic = Computing with words
    • L. A. Zadeh, Fuzzy logic = Computing with words, IEEE Transactions on Fuzzy Systems, vol. 4, no. 2, pp. 103–111, 1996.
    • (1996) IEEE Transactions on Fuzzy Systems , vol.4 , Issue.2 , pp. 103-111
    • Zadeh, L.A.1
  • 39
    • 1642469977 scopus 로고    scopus 로고
    • Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • L. A. Zadeh, Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets and Systems, vol. 90, pp. 111–117, 1997.
    • (1997) Fuzzy Sets and Systems , vol.90 , pp. 111-117
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.