메뉴 건너뛰기




Volumn , Issue , 2008, Pages 549-554

On the use of bagging, mutual information-based feature selection and multicriteria genetic algorithms to design fuzzy rule-based classification ensembles

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DIESEL ENGINES; FUZZY RULES; FUZZY SETS; GENETIC ALGORITHMS; INTELLIGENT CONTROL; INTELLIGENT SYSTEMS;

EID: 55349149050     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/HIS.2008.147     Document Type: Conference Paper
Times cited : (11)

References (16)
  • 2
    • 50149111947 scopus 로고    scopus 로고
    • A First Study on Bagging Fuzzy Rule-based Classification Systems with Multicriteria Genetic Selection of the Component Classifiers
    • Germany
    • O. Cordón, A. Quirin, L. Sanchez, A First Study on Bagging Fuzzy Rule-based Classification Systems with Multicriteria Genetic Selection of the Component Classifiers, in 2008 IEEE Intl. Workshop on GEFS, Germany, 2008, pp. 11-16.
    • (2008) 2008 IEEE Intl. Workshop on GEFS , pp. 11-16
    • Cordón, O.1    Quirin, A.2    Sanchez, L.3
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • L. Breiman, Bagging Predictors, Machine Learning, vol. 24:2, 1996, pp. 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0032139235 scopus 로고    scopus 로고
    • The Random Subspace Method for Constructing Decision Forests
    • T. Ho, The Random Subspace Method for Constructing Decision Forests, IEEE Trans. on PAMI, vol. 20:8, 1998, pp. 832-844.
    • (1998) IEEE Trans. on PAMI , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.1
  • 6
    • 0028468293 scopus 로고
    • Using Mutual Information for Selecting Features in Supervised Neural Net Learning
    • R. Battiti, Using Mutual Information for Selecting Features in Supervised Neural Net Learning, IEEE Trans. on Neural Networks, vol. 5:4, 1994, pp. 537-550.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 7
    • 0000049494 scopus 로고
    • Greedy Randomized Adaptive Search Procedures
    • T. A. Feo, M. G. C. Resende, Greedy Randomized Adaptive Search Procedures, J. of Global Optimization, vol. 6, 1995, pp. 109-133.
    • (1995) J. of Global Optimization , vol.6 , pp. 109-133
    • Feo, T.A.1    Resende, M.G.C.2
  • 9
    • 0025448521 scopus 로고
    • The Strength of Weak Learnability
    • R. Schapire, The Strength of Weak Learnability, Machine Learning, vol. 5:2, 1990, pp. 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 10
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in Search Strategies for Ensemble Feature Selection
    • A. Tsymbal, M. Pechenizkiy, P. Cunningham, Diversity in Search Strategies for Ensemble Feature Selection, Information Fusion, vol. 6, 2005, pp. 83-98.
    • (2005) Information Fusion , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • L. Breiman, Random Forests, Machine Learning, vol. 45:1, 2001, pp. 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 13
    • 33947231519 scopus 로고    scopus 로고
    • A Comparison of Decision Tree Ensemble Creation Techniques
    • R.E. Banfield et al., A Comparison of Decision Tree Ensemble Creation Techniques, IEEE Trans. on PAMI, vol. 29:1, 2007, pp. 173-180.
    • (2007) IEEE Trans. on PAMI , vol.29 , Issue.1 , pp. 173-180
    • Banfield, R.E.1
  • 16
    • 0000259511 scopus 로고    scopus 로고
    • Approximate Statistical Test for Comparing Supervised Classification Learning Algorithms
    • T.G. Dietterich, Approximate Statistical Test for Comparing Supervised Classification Learning Algorithms, Neural Computation, vol. 10:7, 1998, pp. 1895-1923.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.