메뉴 건너뛰기




Volumn 6731 LNCS, Issue , 2011, Pages 90-100

Relevance learning in unsupervised vector quantization based on divergences

Author keywords

divergence learning; relevance learning; vector quantization

Indexed keywords

DATA VECTORS; DIVERGENCE LEARNING; FUZZY C MEAN; NEURAL GAS ALGORITHMS; QUANTIZATION SCHEMES; RELEVANCE LEARNING; SIMILARITY MEASURE; STOCHASTIC GRADIENT DESCENT; VECTOR QUANTIZATION ALGORITHMS;

EID: 79959294295     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21566-7_9     Document Type: Conference Paper
Times cited : (5)

References (37)
  • 1
    • 78650239815 scopus 로고    scopus 로고
    • Local matrix adaptation in topographic neural maps
    • Arnonkijpanich, B., Hasenfuss, A., Hammer, B.: Local matrix adaptation in topographic neural maps. Neurocomputing 74(4), 522-539 (2011).
    • (2011) Neurocomputing , vol.74 , Issue.4 , pp. 522-539
    • Arnonkijpanich, B.1    Hasenfuss, A.2    Hammer, B.3
  • 2
    • 77954586273 scopus 로고    scopus 로고
    • LEAFPROCESSOR: A new leaf phenotyping tool using contour bending energy and shape cluster analysis
    • Backhaus, A., Kuwabara, A., Bauch, M., Monk, N., Sanguinetti, G., Fleming, A.: LEAFPROCESSOR: a new leaf phenotyping tool using contour bending energy and shape cluster analysis. New Phytologist 187(1), 251-261 (2010).
    • (2010) New Phytologist , vol.187 , Issue.1 , pp. 251-261
    • Backhaus, A.1    Kuwabara, A.2    Bauch, M.3    Monk, N.4    Sanguinetti, G.5    Fleming, A.6
  • 4
  • 5
    • 77649237216 scopus 로고    scopus 로고
    • Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data
    • Bunte, K., Hammer, B., Wism̈uller, A., Biehl, M.: Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing 73, 1074-1092 (2010).
    • (2010) Neurocomputing , vol.73 , pp. 1074-1092
    • Bunte, K.1    Hammer, B.2    Wism̈uller, A.3    Biehl, M.4
  • 6
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 43(6), 1351-1362 (2005). (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 7
    • 0000320233 scopus 로고    scopus 로고
    • Application and assessment of multiscale bending energy for morphometric characterization of neural cells
    • Cesar, R.M., da Fontoura Costa, L.: Application and assessment of multiscale bending energy for morphometric characterization of neural cells. Rev. Sci. Instrum. 68(5), 2177-2186 (1997). (Pubitemid 127639163)
    • (1997) Review of Scientific Instruments , vol.68 , Issue.5 , pp. 2177-2186
    • Cesar Jr., R.M.1    Da Fontoura Costa, L.2
  • 8
    • 77956416620 scopus 로고    scopus 로고
    • Families of alpha- beta- and gamma- divergences: Flexible and robust measures of similarities
    • Cichocki, A., Amari, S.-I.: Families of alpha- beta- and gamma- divergences: Flexible and robust measures of similarities. Entropy 12, 1532-1568 (2010).
    • (2010) Entropy , vol.12 , pp. 1532-1568
    • Cichocki, A.1    Amari, S.-I.2
  • 9
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3, 32-57 (1973).
    • (1973) Journal of Cybernetics , vol.3 , pp. 32-57
    • Dunn, J.1
  • 10
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059-1068 (2002).
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 11
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self-organizing maps
    • Oja, E., Kaski, S. (eds.) Elsevier, Amsterdam
    • Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 303-316. Elsevier, Amsterdam (1999).
    • (1999) Kohonen Maps , pp. 303-316
    • Heskes, T.1
  • 12
    • 78049527645 scopus 로고    scopus 로고
    • Fuzzy c-means and fuzzy swarm for fuzzy clustering problem
    • Izakian, H., Abraham, A.: Fuzzy c-means and fuzzy swarm for fuzzy clustering problem. Expert Systems with Applications 38(3), 1835-1838 (2011).
    • (2011) Expert Systems with Applications , vol.38 , Issue.3 , pp. 1835-1838
    • Izakian, H.1    Abraham, A.2
  • 14
    • 0000321758 scopus 로고
    • On the adiabatic theorem of quantum mechanics
    • Kato, T.: On the adiabatic theorem of quantum mechanics. Journal of the Physical Society of Japan 5(6), 435-439 (1950).
    • (1950) Journal of the Physical Society of Japan , vol.5 , Issue.6 , pp. 435-439
    • Kato, T.1
  • 15
    • 0003410791 scopus 로고    scopus 로고
    • Springer Series in Information Sciences Springer, Heidelberg 1995 2nd extended edn
    • Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995), 2nd extended edn. (1997).
    • (1997) Self-Organizing Maps , vol.30
    • Kohonen, T.1
  • 17
    • 84890262130 scopus 로고    scopus 로고
    • Generalization of the lp norm for time series and its application to self-organizing maps
    • Cottrell, M. (ed.) Paris, Sorbonne
    • Lee, J., Verleysen, M.: Generalization of the lp norm for time series and its application to self-organizing maps. In: Cottrell, M. (ed.) Proc. of Workshop on Self- Organizing Maps (WSOM) 2005, Paris, Sorbonne, pp. 733-740 (2005).
    • (2005) Proc. of Workshop on Self-Organizing Maps (WSOM) 2005 , pp. 733-740
    • Lee, J.1    Verleysen, M.2
  • 18
    • 0345257348 scopus 로고    scopus 로고
    • Topological local principal component analysis
    • DOI 10.1016/S0925-2312(03)00414-4
    • Liu, Z.-Y., Xu, L.: Topological local principal component analysis. Neurocomputing 55(3-4), 739-745 (2003). (Pubitemid 37455486)
    • (2003) Neurocomputing , vol.55 , Issue.3-4 , pp. 739-745
    • Liu, Z.-Y.1    Xu, L.2
  • 19
    • 1242293126 scopus 로고    scopus 로고
    • A principal components analysis self-organizing map
    • DOI 10.1016/j.neunet.2003.04.001
    • Ĺopez-Rubio, E., noz Ṕerez, J.M., Ǵomez-Ruiz, J.: A principal components analysis self-organizing map. Neural Networks 2(2), 261-270 (2004). (Pubitemid 38230223)
    • (2004) Neural Networks , vol.17 , Issue.2 , pp. 261-270
    • Lopez-Rubio, E.1    Munoz-Perez, J.2    Gomez-Ruiz, J.A.3
  • 20
    • 0027632248 scopus 로고
    • 'Neuralgas' network for vector quantization and its application to time-series prediction
    • Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: 'Neuralgas' network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558-569 (1993).
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 21
    • 8644270422 scopus 로고    scopus 로고
    • An extension of neural gas to local PCA
    • DOI 10.1016/j.neucom.2003.09.014, PII S0925231204002346
    • M̈oller, R., Hoffmann, H.: An extension of neural gas to local PCA. Neurocomputing 62, 305-326 (2004). (Pubitemid 39504668)
    • (2004) Neurocomputing , vol.62 , Issue.1-4 , pp. 305-326
    • Moller, R.1    Hoffmann, H.2
  • 23
    • 0011878471 scopus 로고
    • Unsupervised learning for feature extraction
    • Zurada, J.M., Marks II, R.J., Robinson, C.J. (eds.) IEEE Press, Los Alamitos
    • Oja, E., Lampinen, J.: Unsupervised learning for feature extraction. In: Zurada, J.M., Marks II, R.J., Robinson, C.J. (eds.) Computational Intelligence Imitating Life, pp. 13-22. IEEE Press, Los Alamitos (1994).
    • (1994) Computational Intelligence Imitating Life , pp. 13-22
    • Oja, E.1    Lampinen, J.2
  • 24
    • 0000986833 scopus 로고    scopus 로고
    • Information theoretic learning
    • Haykin, S. (ed.) Wiley, New York
    • Principe, J.C., III, J.F., Xu, D.: Information theoretic learning. In: Haykin, S. (ed.) Unsupervised Adaptive Filtering, Wiley, New York (2000).
    • (2000) Unsupervised Adaptive Filtering
    • Principe, J.C.1    Xu, D.2
  • 25
    • 84956074083 scopus 로고
    • A self-organizing network for principle-component analysis
    • Rubner, J., Tavan, P.: A self-organizing network for principle-component analysis. Europhys. Letters 7(10), 693-698 (1989).
    • (1989) Europhys. Letters , vol.7 , Issue.10 , pp. 693-698
    • Rubner, J.1    Tavan, P.2
  • 26
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • Schneider, P., Hammer, B., Biehl, M.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532-3561 (2009).
    • (2009) Neural Computation , vol.21 , pp. 3532-3561
    • Schneider, P.1    Hammer, B.2    Biehl, M.3
  • 27
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • Tipping, M., Bishop, C.: Mixtures of probabilistic principal component analyzers. Neural Computation 11, 443-482 (1999).
    • (1999) Neural Computation , vol.11 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 28
    • 0032773697 scopus 로고    scopus 로고
    • Faithful representations with topographic maps
    • DOI 10.1016/S0893-6080(99)00041-6, PII S0893608099000416
    • Van Hulle, M.M.: Faithful representations with topographic maps. Neural Networks 12(6), 803-823 (1999). (Pubitemid 29359220)
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 803-823
    • Van Hulle, M.M.1
  • 30
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self-organizing feature maps: Exact definition and measurement
    • PII S1045922797017499
    • Villmann, T., Der, R., Herrmann, M., Martinetz, T.: Topology Preservation in Self-Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks 8(2), 256-266 (1997). (Pubitemid 127765121)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 256-266
    • Villmann, T.1    Der, R.2    Herrmann, M.3    Martinetz, T.M.4
  • 31
    • 79958244935 scopus 로고    scopus 로고
    • Divergence based vector quantization
    • Villmann, T., Haase, S.: Divergence based vector quantization. Neural Computation 23(5), 1343-1392 (2011).
    • (2011) Neural Computation , vol.23 , Issue.5 , pp. 1343-1392
    • Villmann, T.1    Haase, S.2
  • 32
  • 35
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • DOI 10.1109/TNN.2005.845141
    • Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645-678 (2005). (Pubitemid 40718010)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2
  • 36
    • 0016090811 scopus 로고
    • An analysis technique for biological shape. i
    • Young, I.T., Walker, J.E., Bowie, J.E.: An analysis technique for biological shape. i. Information and Control 25(4), 357-370 (1974).
    • (1974) Information and Control , vol.25 , Issue.4 , pp. 357-370
    • Young, I.T.1    Walker, J.E.2    Bowie, J.E.3
  • 37
    • 78649332539 scopus 로고    scopus 로고
    • Validity index for clusters of different sizes and densities
    • Zalik, K., Zalik, B.: Validity index for clusters of different sizes and densities. Pattern Recognition Letters 32, 221-234 (2011)
    • (2011) Pattern Recognition Letters , vol.32 , pp. 221-234
    • Zalik, K.1    Zalik, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.