메뉴 건너뛰기




Volumn 83, Issue 2, 2011, Pages 137-161

Effective feature construction by maximum common subgraph sampling

Author keywords

Chemoinformatics; Feature generation; Structure activity learning; Subgraph mining

Indexed keywords

BENCHMARK DATASETS; CHEMOINFORMATICS; COMMON SUBGRAPH; CORRELATION MEASURES; DATA SETS; FEATURE CONSTRUCTION; FEATURE GENERATION; GRAPH MINING; LOCAL PATTERNS; MAXIMUM COMMON SUBGRAPHS; MEDIUM SIZE; ORDERS OF MAGNITUDE; POLYNOMIAL-TIME; PREDICTIVE MODELS; PREDICTIVE PERFORMANCE; RUNTIMES; SAMPLING STRATEGIES; STATE-OF-THE-ART METHODS; STRUCTURE-ACTIVITY; SUBGRAPH ISOMORPHISM; SUBGRAPH MINING;

EID: 79958834639     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-010-5193-8     Document Type: Conference Paper
Times cited : (27)

References (32)
  • 3
    • 0032024433 scopus 로고    scopus 로고
    • A graph distance metric based on the maximal common subgraph
    • PII S0167865597001797
    • Bunke, H., Shearer, K. (1998). A graph distance metric based on the maximal common subgraph. Pattern Recognition Lett ers, 19 , 255-259. (Pubitemid 128383123)
    • (1998) Pattern Recognition Letters , vol.19 , Issue.3-4 , pp. 255-259
    • Bunke, H.1    Shearer, K.2
  • 4
    • 34548580482 scopus 로고    scopus 로고
    • Classification of small molecules by two- and three-dimensional decomposition kernels
    • DOI 10.1093/bioinformatics/btm298
    • Ceroni, A., Costa, F., Frasconi, P. (2007). Classification of small molecules by two- and three-dimensional decomposition kernels. Bioinformatics, 23(16), 2038-2045. (Pubitemid 47394103)
    • (2007) Bioinformatics , vol.23 , Issue.16 , pp. 2038-2045
    • Ceroni, A.1    Costa, F.2    Frasconi, P.3
  • 5
    • 70350719970 scopus 로고    scopus 로고
    • Origami: A novel and effective approach for mining representative orthogonal graph patterns
    • Chaoji, V., Al Hasan,M., Salem, S., Besson, J., Zaki, J.M. (2008). Origami: a novel and effective approach for mining representative orthogonal graph patterns. Statistical Analysis and Data Mining, 1(2), 67-84.
    • (2008) Statistical Analysis and Data Mining , vol.1 , Issue.2 , pp. 67-84
    • Chaoji, V.1    Al, HasanM.2    Salem, S.3    Besson, J.4    Zaki, J.M.5
  • 7
    • 57249103315 scopus 로고    scopus 로고
    • Deriving distance metrics from generality relations
    • De Raedt, L., Ramon, J. (2009). Deriving distance metrics from generality relations. Pattern Recognition Letters, 30 (3), 187-191.
    • (2009) Pattern Recognition Letters , vol.30 , Issue.3 , pp. 187-191
    • De Raedt, L.1    Ramon, J.2
  • 8
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1-30. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 9
    • 24344484786 scopus 로고    scopus 로고
    • Frequent substructure-based approaches for classifying chemical compounds
    • DOI 10.1109/TKDE.2005.127, Mining Biological Data
    • Deshpande, M., Kuramochi, M., Wale, N., Karypis, G. (2005). Frequent substructure-based approaches for classifying chemical compounds. IEEE Transactions on Knowledge and Data Engineering, 17(8), 1036-1050. (Pubitemid 41259847)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.8 , pp. 1036-1050
    • Deshpande, M.1    Kuramochi, M.2    Wale, N.3    Karypis, G.4
  • 13
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • Hand, D. J. (2009). Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning, 77(1), 103-123.
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 103-123
    • Hand, D.J.1
  • 21
    • 1942515438 scopus 로고    scopus 로고
    • Propositionalization approaches to relational data mining
    • S. Džeroski & N. Lavrač (Eds.) Berlin: Springer
    • Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In S. Džeroski & N. Lavrač (Eds.), Relational data mining (pp. 262-291). Berlin: Springer.
    • (2001) Relational Data Mining (Pp. 262-291)
    • Kramer, S.1    Lavrač, N.2    Flach, P.3
  • 23
    • 0003203117 scopus 로고
    • A further note on inductive generalization
    • Edinburgh: Edinburgh University Press
    • Plotkin, G. (1971). A further note on inductive generalization. In Machine intelligence (Vol. 6, pp. 101-124). Edinburgh: Edinburgh University Press.
    • (1971) Machine Intelligence , vol.6 , pp. 101-124
    • Plotkin, G.1
  • 25
    • 0036663707 scopus 로고    scopus 로고
    • Maximum common subgraph isomorphism algorithms for the matching of chemical structures
    • DOI 10.1023/A:1021271615909
    • Raymond, J., & Willett, P. (2002). Maximum common subgraph isomorphism algorithms for the matching of chemical structures. Journal of Computer-Aided Molecular Design, 16, 521-533. (Pubitemid 36013605)
    • (2002) Journal of Computer-Aided Molecular Design , vol.16 , Issue.7 , pp. 521-533
    • Raymond, J.W.1    Willett, P.2
  • 27
    • 84957882757 scopus 로고    scopus 로고
    • Distance Induction in First Order Logic
    • Inductive Logic Programming
    • Sebag, M. (1997). Distance induction in first order logic. In N. Lavrač & S. Džeroski (Eds.), Lecture notes in artificial intelligence: Vol. 1297. Proceedings of the seventh international workshop on inductive logic programming (pp. 264-272). Berlin: Springer. (Pubitemid 127124398)
    • (1997) Lecture Notes in Computer Science , Issue.1297 , pp. 264-272
    • Sebag, M.1
  • 28
    • 26944486424 scopus 로고    scopus 로고
    • Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity
    • Swamidass, S. J., Chen, J., Bruand, J., Phung, P., Ralaivola, L., & Baldi, P. (2005). Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics, 21(suppl-1), 359-368.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1 , pp. 359-368
    • Swamidass, S.J.1    Chen, J.2    Bruand, J.3    Phung, P.4    Ralaivola, L.5    Baldi, P.6
  • 29
    • 41149084603 scopus 로고    scopus 로고
    • Comparison of descriptor spaces for chemical compound retrieval and classification
    • Wale, N.,Watson, I., & Karypis, G. (2008). Comparison of descriptor spaces for chemical compound retrieval and classification. Knowledge and Information Systems, 14, 347-375.
    • (2008) Knowledge and Information Systems , vol.14 , pp. 347-375
    • Wale, N.1    Watson, I.2    Karypis, G.3
  • 30
    • 0345997703 scopus 로고
    • Information theoretical analysis of multivariate correlation
    • Watanabe, S. (1960). Information theoretical analysis of multivariate correlation. IBM Journal of Research and Development, 4(1), 66-82.
    • (1960) IBM Journal of Research and Development , vol.4 , Issue.1 , pp. 66-82
    • Watanabe, S.1
  • 31
    • 33751246188 scopus 로고    scopus 로고
    • Similarity-based virtual screening using 2D fingerprints
    • Willett, P. (2006). Similarity-based virtual screening using 2D fingerprints. Drug Discovery Today, 11(23/24), 1046-1051.
    • (2006) Drug Discovery Today , vol.11 , Issue.23-24 , pp. 1046-1051
    • Willett, P.1
  • 32
    • 78149333073 scopus 로고    scopus 로고
    • GSpan: Graph-based substructure pattern mining
    • ICDM 2002, Japan. Las Alamitos: IEEE Comput. Soc
    • Yan, X., & Han, J. (2002). gSpan: Graph-based substructure pattern mining. In Proceedings of the 2002 IEEE international conference on data mining, ICDM 2002, Japan (pp. 721-724). Las Alamitos: IEEE Comput. Soc.
    • (2002) Proceedings of the 2002 IEEE International Conference on Data Mining , pp. 721-724
    • Yan, X.1    Han, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.