-
1
-
-
17544382289
-
AdipoQ is a novel adipose-specific gene dysregulated in obesity
-
DOI 10.1074/jbc.271.18.10697
-
Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996;271(18):10697-10703. (Pubitemid 26145805)
-
(1996)
Journal of Biological Chemistry
, vol.271
, Issue.18
, pp. 10697-10703
-
-
Hu, E.1
Liang, P.2
Spiegelman, B.M.3
-
2
-
-
0028787490
-
A novel serum protein similar to C1q, produced exclusively in adipocytes
-
Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270(45):26746-26749.
-
(1995)
J Biol Chem
, vol.270
, Issue.45
, pp. 26746-26749
-
-
Scherer, P.E.1
Williams, S.2
Fogliano, M.3
Baldini, G.4
Lodish, H.F.5
-
3
-
-
0037231459
-
Association of hypoadiponectinemia with coronary artery disease in men
-
DOI 10.1161/01.ATV.0000048856.22331.50
-
Kumada M, et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 2003;23(1):85-89. (Pubitemid 36091630)
-
(2003)
Arteriosclerosis, Thrombosis, and Vascular Biology
, vol.23
, Issue.1
, pp. 85-89
-
-
Kumada, M.1
Kihara, S.2
Sumitsuji, S.3
Kawamoto, T.4
Matsumoto, S.5
Ouchi, N.6
Arita, Y.7
Okamoto, Y.8
Shimomura, I.9
Hiraoka, H.10
Nakamura, T.11
Funahashi, T.12
Matsuzawa, Y.13
-
4
-
-
0034096988
-
Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients
-
Hotta K, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20(6):1595-1599. (Pubitemid 30353893)
-
(2000)
Arteriosclerosis, Thrombosis, and Vascular Biology
, vol.20
, Issue.6
, pp. 1595-1599
-
-
Hotta, K.1
Funahashi, T.2
Arita, Y.3
Takahashi, M.4
Matsuda, M.5
Okamoto, Y.6
Iwahashi, H.7
Kuriyama, H.8
Ouchi, N.9
Maeda, K.10
Nishida, M.11
Kihara, S.12
Sakai, N.13
Nakajima, T.14
Hasegawa, K.15
Muraguchi, M.16
Ohmoto, Y.17
Nakamura, T.18
Yamashita, S.19
Hanafusa, T.20
Matsuzawa, Y.21
more..
-
5
-
-
34347255023
-
Adiponectin Stimulates AMP-Activated Protein Kinase in the Hypothalamus and Increases Food Intake
-
DOI 10.1016/j.cmet.2007.06.003, PII S1550413107001593
-
Kubota N, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007;6(1):55-68. (Pubitemid 47007437)
-
(2007)
Cell Metabolism
, vol.6
, Issue.1
, pp. 55-68
-
-
Kubota, N.1
Yano, W.2
Kubota, T.3
Yamauchi, T.4
Itoh, S.5
Kumagai, H.6
Kozono, H.7
Takamoto, I.8
Okamoto, S.9
Shiuchi, T.10
Suzuki, R.11
Satoh, H.12
Tsuchida, A.13
Moroi, M.14
Sugi, K.15
Noda, T.16
Ebinuma, H.17
Ueta, Y.18
Kondo, T.19
Araki, E.20
Ezaki, O.21
Nagai, R.22
Tobe, K.23
Terauchi, Y.24
Ueki, K.25
Minokoshi, Y.26
Kadowaki, T.27
more..
-
6
-
-
11144356189
-
Adiponectin I164T mutation is associated with the metabolic syndrome and coronary artery disease
-
DOI 10.1016/j.jacc.2003.10.049, PII S0735109704000956
-
Ohashi K, et al. Adiponectin I164T mutation is associated with the metabolic syndrome and coronary artery disease. J Am Coll Cardiol. 2004; 43(7):1195-1200. (Pubitemid 38452596)
-
(2004)
Journal of the American College of Cardiology
, vol.43
, Issue.7
, pp. 1195-1200
-
-
Ohashi, K.1
Ouchi, N.2
Kihara, S.3
Funahashi, T.4
Nakamura, T.5
Sumitsuji, S.6
Kawamoto, T.7
Matsumoto, S.8
Nagaretani, H.9
Kumada, M.10
Okamoto, Y.11
Nishizawa, H.12
Kishida, K.13
Maeda, N.14
Hiraoka, H.15
Iwashima, Y.16
Ishikawa, K.17
Ohishi, M.18
Katsuya, T.19
Rakugi, H.20
Ogihara, T.21
Matsuzawa, Y.22
more..
-
7
-
-
17944365228
-
The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
-
DOI 10.1038/90984
-
Yamauchi T, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941-946. (Pubitemid 32756432)
-
(2001)
Nature Medicine
, vol.7
, Issue.8
, pp. 941-946
-
-
Yamauchi, T.1
Kamon, J.2
Waki, H.3
Terauchi, Y.4
Kubota, N.5
Hara, K.6
Mori, Y.7
Ide, T.8
Murakami, K.9
Tsuboyama-Kasaoka, N.10
Ezaki, O.11
Akanuma, Y.12
Gavrilova, O.13
Vinson, C.14
Reitman, M.L.15
Kagechika, H.16
Shudo, K.17
Yoda, M.18
Nakano, Y.19
Tobe, K.20
Nagai, R.21
Kimura, S.22
Tomita, M.23
Froguel, P.24
Kadowaki, T.25
more..
-
8
-
-
2442659256
-
Adiponectin acts in the brain to decrease body weight
-
DOI 10.1038/nm1029
-
Qi Y, et al. Adiponectin acts in the brain to decrease body weight. Nat Med. 2004;10(5):524-529. (Pubitemid 38667912)
-
(2004)
Nature Medicine
, vol.10
, Issue.5
, pp. 524-529
-
-
Qi, Y.1
Takahashi, N.2
Hileman, S.M.3
Patel, H.R.4
Berg, A.H.5
Pajvani, U.B.6
Scherer, P.E.7
Ahima, R.S.8
-
9
-
-
0035852760
-
Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice
-
DOI 10.1073/pnas.041591798
-
Fruebis J, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A. 2001;98(4):2005-2010. (Pubitemid 32165613)
-
(2001)
Proceedings of the National Academy of Sciences of the United States of America
, vol.98
, Issue.4
, pp. 2005-2010
-
-
Fruebis, J.1
Tsao, T.-S.2
Javorschi, S.3
Ebbets-Reed, D.4
Erickson, M.R.S.5
Yen, F.T.6
Bihain, B.E.7
Lodish, H.F.8
-
10
-
-
0035663963
-
Endogenous glucose production is inhibited by the adipose-derived protein Acrp30
-
DOI 10.1172/JCI200114120
-
Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest. 2001;108(12):1875-1881. (Pubitemid 34015133)
-
(2001)
Journal of Clinical Investigation
, vol.108
, Issue.12
, pp. 1875-1881
-
-
Combs, T.P.1
Berg, A.H.2
Obici, S.3
Scherer, P.E.4
Rossetti, L.5
-
11
-
-
12944302597
-
Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells
-
DOI 10.1007/s00125-004-1609-y
-
Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48(1):132-139. (Pubitemid 40174665)
-
(2005)
Diabetologia
, vol.48
, Issue.1
, pp. 132-139
-
-
Ceddia, R.B.1
Somwar, R.2
Maida, A.3
Fang, X.4
Bikopoulos, G.5
Sweeney, G.6
-
12
-
-
0034881391
-
The adipocyte-secreted protein Acrp30 enhances hepatic insulin action
-
Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947-953.
-
(2001)
Nat Med
, vol.7
, Issue.8
, pp. 947-953
-
-
Berg, A.H.1
Combs, T.P.2
Du, X.3
Brownlee, M.4
Scherer, P.E.5
-
13
-
-
0041302377
-
The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice
-
DOI 10.1172/JCI200317797
-
Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112(1):91-100. (Pubitemid 38056380)
-
(2003)
Journal of Clinical Investigation
, vol.112
, Issue.1
, pp. 91-100
-
-
Xu, A.1
Wang, Y.2
Keshaw, H.3
Xu, L.Y.4
Lam, K.S.L.5
Cooper, G.J.S.6
-
14
-
-
33646346627
-
Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists
-
DOI 10.1074/jbc.M505311200
-
Nawrocki AR, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J Biol Chem. 2006; 281(5):2654-2660. (Pubitemid 43845727)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.5
, pp. 2654-2660
-
-
Nawrocki, A.R.1
Rajala, M.W.2
Tomas, E.3
Pajvani, U.B.4
Saha, A.K.5
Trumbauer, M.E.6
Pang, Z.7
Chen, A.S.8
Ruderman, N.B.9
Chen, H.10
Rossetti, L.11
Scherer, P.E.12
-
15
-
-
34848872799
-
Obesity-associated improvements in metabolic profile through expansion of adipose tissue
-
Kim JY, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621-2637.
-
(2007)
J Clin Invest
, vol.117
, Issue.9
, pp. 2621-2637
-
-
Kim, J.Y.1
-
16
-
-
63849206613
-
AMP-activated protein kinase in the regulation of hepatic energy metabolism: From physiology to therapeutic perspectives
-
Viollet B, et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf). 2009;196(1):81-98.
-
(2009)
Acta Physiol (Oxf)
, vol.196
, Issue.1
, pp. 81-98
-
-
Viollet, B.1
-
17
-
-
0035542970
-
AMP-activated protein kinase: The energy charge hypothesis revisited
-
Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays. 2001;23(12):1112-1119.
-
(2001)
Bioessays
, vol.23
, Issue.12
, pp. 1112-1119
-
-
Hardie, D.G.1
Hawley, S.A.2
-
18
-
-
0024786438
-
Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl- CoA reductase kinase activities
-
DOI 10.1111/j.1432-1033.1989.tb15186.x
-
Carling D, Clarke PR, Zammit VA, Hardie DG. Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl- CoA reductase kinase activities. Eur J Biochem. 1989; 186(1-2):129-136. (Pubitemid 20015135)
-
(1989)
European Journal of Biochemistry
, vol.186
, Issue.1-2
, pp. 129-136
-
-
Carling, D.1
Clarke, P.R.2
Zammit, V.A.3
Hardie, D.G.4
-
19
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo SH, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 2005;437(7062):1109-1111.
-
(2005)
Nature
, vol.437
, Issue.7062
, pp. 1109-1111
-
-
Koo, S.H.1
-
20
-
-
10744230065
-
LKB1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade
-
DOI 10.1016/j.cub.2003.10.031
-
Woods A, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 2003;13(22):2004-2008. (Pubitemid 37425212)
-
(2003)
Current Biology
, vol.13
, Issue.22
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.R.2
Dickerson, K.3
Leiper, F.C.4
Fryer, L.G.D.5
Neumann, D.6
Schlattner, U.7
Wallimann, T.8
Carlson, M.9
Carling, D.10
-
21
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
DOI 10.1073/pnas.0308061100
-
Shaw RJ, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. 2004;101(10):3329-3335. (Pubitemid 38338195)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.10
, pp. 3329-3335
-
-
Shaw, R.J.1
Kosmatka, M.2
Bardeesy, N.3
Hurley, R.L.4
Witters, L.A.5
DePinho, R.A.6
Cantley, L.C.7
-
22
-
-
23844471263
-
2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases
-
DOI 10.1074/jbc.M503824200
-
Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem. 2005;280(32):29060-29066. (Pubitemid 41161355)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.32
, pp. 29060-29066
-
-
Hurley, R.L.1
Anderson, K.A.2
Franzone, J.M.3
Kemp, B.E.4
Means, A.R.5
Witters, L.A.6
-
23
-
-
0345107247
-
Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade
-
Hawley SA, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2(4):28.
-
(2003)
J Biol
, vol.2
, Issue.4
, pp. 28
-
-
Hawley, S.A.1
-
24
-
-
33751013309
-
Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3
-
Koh HJ, et al. Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol Cell Biol. 2006;26(22):8217-8227.
-
(2006)
Mol Cell Biol
, vol.26
, Issue.22
, pp. 8217-8227
-
-
Koh, H.J.1
-
25
-
-
20044370885
-
Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction
-
DOI 10.1038/sj.emboj.7600667
-
Sakamoto K, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005;24(10):1810-1820. (Pubitemid 40769500)
-
(2005)
EMBO Journal
, vol.24
, Issue.10
, pp. 1810-1820
-
-
Sakamoto, K.1
McCarthy, A.2
Smith, D.3
Green, K.A.4
Hardie, D.G.5
Ashworth, A.6
Alessi, D.R.7
-
26
-
-
28844433635
-
Medicine: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
DOI 10.1126/science.1120781
-
Shaw RJ, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310(5754):1642-1646. (Pubitemid 41780780)
-
(2005)
Science
, vol.310
, Issue.5754
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
Koo, S.-H.4
Bardeesy, N.5
DePinho, R.A.6
Montminy, M.7
Cantley, L.C.8
-
27
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase
-
DOI 10.1038/nm788
-
Yamauchi T, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002; 8(11):1288-1295. (Pubitemid 35373562)
-
(2002)
Nature Medicine
, vol.8
, Issue.11
, pp. 1288-1295
-
-
Yamauchi, T.1
Kamon, J.2
Minokoshi, Y.3
Ito, Y.4
Waki, H.5
Uchida, S.6
Yamashita, S.7
Noda, M.8
Kita, S.9
Ueki, K.10
Eto, K.11
Akanuma, Y.12
Froguel, P.13
Foufelle, F.14
Ferre, P.15
Carling, D.16
Kimura, S.17
Nagai, R.18
Kahn, B.B.19
Kadowaki, T.20
more..
-
28
-
-
63149189738
-
Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway
-
Awazawa M, et al. Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway. Biochem Biophys Res Commun. 2009;382(1):51-56.
-
(2009)
Biochem Biophys Res Commun
, vol.382
, Issue.1
, pp. 51-56
-
-
Awazawa, M.1
-
29
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/ AMPK pathway via a decrease in hepatic energy state
-
Foretz M, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/ AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120(7):2355-2369.
-
(2010)
J Clin Invest
, vol.120
, Issue.7
, pp. 2355-2369
-
-
Foretz, M.1
-
30
-
-
0037068461
-
Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation
-
DOI 10.1038/nature01045
-
Bardeesy N, et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature. 2002;419(6903):162-167. (Pubitemid 35025443)
-
(2002)
Nature
, vol.419
, Issue.6903
, pp. 162-167
-
-
Bardeesy, N.1
Sinha, M.2
Hezel, A.F.3
Signoretti, S.4
Hathaway, N.A.5
Sharpless, N.E.6
Loda, M.7
Carrasco, D.R.8
DePinho, R.A.9
-
31
-
-
69249147344
-
Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/ LKB1-dependent and phospholipase C/Ca2+/ Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways
-
Zhou L, et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/ LKB1-dependent and phospholipase C/Ca2+/ Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J Biol Chem. 2009; 284(33):22426-22435.
-
(2009)
J Biol Chem
, vol.284
, Issue.33
, pp. 22426-22435
-
-
Zhou, L.1
-
32
-
-
50249148288
-
Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity
-
Hashimoto YK, Satoh T, Okamoto M, Takemori H. Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity. J Cell Biochem. 2008; 104(5):1724-1739.
-
(2008)
J Cell Biochem
, vol.104
, Issue.5
, pp. 1724-1739
-
-
Hashimoto, Y.K.1
Satoh, T.2
Okamoto, M.3
Takemori, H.4
-
33
-
-
67649657842
-
CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis
-
Le Lay J, Tuteja G, White P, Dhir R, Ahima R, Kaestner KH. CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis. Cell Metab. 2009;10(1):55-62.
-
(2009)
Cell Metab
, vol.10
, Issue.1
, pp. 55-62
-
-
Le Lay, J.1
Tuteja, G.2
White, P.3
Dhir, R.4
Ahima, R.5
Kaestner, K.H.6
-
34
-
-
78651260799
-
Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin
-
Holland WL, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 2010;17(1):55-63.
-
(2010)
Nat Med
, vol.17
, Issue.1
, pp. 55-63
-
-
Holland, W.L.1
-
35
-
-
67650096801
-
Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome
-
Yang G, Badeanlou L, Bielawski J, Roberts AJ, Hannun YA, Samad F. Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2009;297(1):E211-E224.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.297
, Issue.1
-
-
Yang, G.1
Badeanlou, L.2
Bielawski, J.3
Roberts, A.J.4
Hannun, Y.A.5
Samad, F.6
-
36
-
-
77955300117
-
Increased hepatic insulin action in diet-induced obese mice following inhibition of glucosylceramide synthase
-
Yew NS, et al. Increased hepatic insulin action in diet-induced obese mice following inhibition of glucosylceramide synthase. PLoS One. 2010;5(6):e11239.
-
(2010)
PLoS One
, vol.5
, Issue.6
-
-
Yew, N.S.1
-
37
-
-
0037205414
-
Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity
-
DOI 10.1074/jbc.M200601200
-
Wang Y, Xu A, Knight C, Xu LY, Cooper GJ. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity. J Biol Chem. 2002; 277(22):19521-19529. (Pubitemid 34967464)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.22
, pp. 19521-19529
-
-
Wang, Y.1
Xu, A.2
Knight, C.3
Xu, L.Y.4
Cooper, G.J.S.5
-
38
-
-
41849093037
-
The role of FoxO in the regulation of metabolism
-
DOI 10.1038/onc.2008.25, PII ONC200825
-
Gross DN, van den Heuvel APJ, Birnbaum MJ. The role of FoxO in the regulation of metabolism. Oncogene. 2008;27(16):2320-2336. (Pubitemid 351501783)
-
(2008)
Oncogene
, vol.27
, Issue.16
, pp. 2320-2336
-
-
Gross, D.N.1
Van Den, H.A.P.J.2
Birnbaum, M.J.3
-
39
-
-
33744972277
-
APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function
-
Mao X, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006;8(5):516-523.
-
(2006)
Nat Cell Biol
, vol.8
, Issue.5
, pp. 516-523
-
-
Mao, X.1
-
40
-
-
33750578279
-
Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha
-
Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes. 2006;55(9):2562- 2570.
-
(2006)
Diabetes
, vol.55
, Issue.9
, pp. 2562-2570
-
-
Yoon, M.J.1
Lee, G.Y.2
Chung, J.J.3
Ahn, Y.H.4
Hong, S.H.5
Kim, J.B.6
-
41
-
-
33847733103
-
Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions
-
DOI 10.1038/nm1557, PII NM1557
-
Yamauchi T, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007; 13(3):332-339. (Pubitemid 46376688)
-
(2007)
Nature Medicine
, vol.13
, Issue.3
, pp. 332-339
-
-
Yamauchi, T.1
Nio, Y.2
Maki, T.3
Kobayashi, M.4
Takazawa, T.5
Iwabu, M.6
Okada-Iwabu, M.7
Kawamoto, S.8
Kubota, N.9
Kubota, T.10
Ito, Y.11
Kamon, J.12
Tsuchida, A.13
Kumagai, K.14
Kozono, H.15
Hada, Y.16
Ogata, H.17
Tokuyama, K.18
Tsunoda, M.19
Ide, T.20
Murakami, K.21
Awazawa, M.22
Takamoto, I.23
Froguel, P.24
Hara, K.25
Tobe, K.26
Nagai, R.27
Ueki, K.28
Kadowaki, T.29
more..
-
42
-
-
0037494960
-
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
-
DOI 10.1038/nature01705
-
Yamauchi T, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762-769. (Pubitemid 36735700)
-
(2003)
Nature
, vol.423
, Issue.6941
, pp. 762-769
-
-
Yamauchi, T.1
Kamon, J.2
Ito, Y.3
Tsuchida, A.4
Yokomizo, T.5
Kita, S.6
Sugiyama, T.7
Miyagishi, M.8
Hara, K.9
Tsunoda, M.10
Murakami, K.11
Ohteki, T.12
Uchida, S.13
Takekawa, S.14
Waki, H.15
Tsuno, N.H.16
Shibata, Y.17
Terauchi, Y.18
Froguel, P.19
Tobe, K.20
Koyasu, S.21
Taira, K.22
Kitamura, T.23
Shimizu, T.24
Nagai, R.25
Kadowaki, T.26
more..
-
43
-
-
69749095451
-
Adiponectin-stimulated CXCL8 release in primary human hepatocytes is regulated by ERK1/ERK2, p38 MAPK, NF-kappaB, and STAT3 signaling pathways
-
Wanninger J, et al. Adiponectin-stimulated CXCL8 release in primary human hepatocytes is regulated by ERK1/ERK2, p38 MAPK, NF-kappaB, and STAT3 signaling pathways. Am J Physiol Gastrointest Liver Physiol. 2009;297(3):G611-G618.
-
(2009)
Am J Physiol Gastrointest Liver Physiol
, vol.297
, Issue.3
-
-
Wanninger, J.1
-
44
-
-
77954964776
-
An energetic tale of AMPK-independent effects of metformin
-
Miller RA, Birnbaum MJ. An energetic tale of AMPK-independent effects of metformin. J Clin Invest. 2010;120(7):2267-2270.
-
(2010)
J Clin Invest
, vol.120
, Issue.7
, pp. 2267-2270
-
-
Miller, R.A.1
Birnbaum, M.J.2
-
45
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu Y, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008;456(7219):269-273.
-
(2008)
Nature
, vol.456
, Issue.7219
, pp. 269-273
-
-
Liu, Y.1
-
46
-
-
33744544094
-
Role of hepatic AMPK activation in glucose metabolism and dexamethasone-induced regulation of AMPK expression
-
DOI 10.1016/j.diabres.2005.12.011, PII S0168822706000118
-
Viana AY, et al. Role of hepatic AMPK activation in glucose metabolism and dexamethasone-induced regulation of AMPK expression. Diabetes Res Clin Pract. 2006;73(2):135-142. (Pubitemid 43928157)
-
(2006)
Diabetes Research and Clinical Practice
, vol.73
, Issue.2
, pp. 135-142
-
-
Viana, A.Y.I.1
Sakoda, H.2
Anai, M.3
Fujishiro, M.4
Ono, H.5
Kushiyama, A.6
Fukushima, Y.7
Sato, Y.8
Oshida, Y.9
Uchijima, Y.10
Kurihara, H.11
Asano, T.12
-
47
-
-
0037251455
-
The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity
-
DOI 10.1172/JCI200316567
-
Viollet B, et al. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest. 2003;111(1):91-98. (Pubitemid 36134852)
-
(2003)
Journal of Clinical Investigation
, vol.111
, Issue.1
, pp. 91-98
-
-
Viollet, B.1
Andreelli, F.2
Jorgensen, S.B.3
Perrin, C.4
Geloen, A.5
Flamez, D.6
Mu, J.7
Lenzner, C.8
Baud, O.9
Bennoun, M.10
Gomas, E.11
Nicolas, G.12
Wojtaszewski, J.F.P.13
Kahn, A.14
Carling, D.15
Schuit, F.C.16
Birnbaum, M.J.17
Richter, E.A.18
Burcelin, R.19
Vaulont, S.20
more..
-
48
-
-
33845522287
-
Loss of resistin improves glucose homeostasis in leptin deficiency
-
DOI 10.2337/db05-0615
-
Qi Y, et al. Loss of resistin improves glucose homeostasis in leptin deficiency. Diabetes. 2006; 55(11):3083-3090. (Pubitemid 44923646)
-
(2006)
Diabetes
, vol.55
, Issue.11
, pp. 3083-3090
-
-
Qi, Y.1
Nie, Z.2
Lee, Y.-S.3
Singhal, N.S.4
Scherer, P.E.5
Lazar, M.A.6
Ahima, R.S.7
-
49
-
-
0017101039
-
Preparation of isolated rat liver cells
-
Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29-83.
-
(1976)
Methods Cell Biol
, vol.13
, pp. 29-83
-
-
Seglen, P.O.1
|