메뉴 건너뛰기




Volumn 19, Issue 6, 2011, Pages 1476-1489

Bayesian networks for discrete observation distributions in speech recognition

Author keywords

Bayesian networks; expectationmaximization; graphical models; maximum likelihood

Indexed keywords

BASELINE SYSTEMS; DISCRETE RANDOM VARIABLES; EXPECTATIONMAXIMIZATION; FEATURE VECTORS; GAUSSIAN MIXTURES; GAUSSIAN MODEL; GRAPHICAL MODEL; INTER-FEATURE DEPENDENCIES; JOINT STATISTICS; MIXTURES OF GAUSSIANS; MULTI-MODAL; ROBUSTNESS AGAINST NOISE; SPEECH FEATURES; UNIMODAL DISTRIBUTION;

EID: 79957755364     PISSN: 15587916     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASL.2010.2092764     Document Type: Article
Times cited : (6)

References (57)
  • 1
    • 0028466072 scopus 로고
    • The importance of cepstral parameter correlations in speech recognition
    • A. Ljolje, "The importance of cepstral parameter correlations in speech recognition," Comput. Speech Lang., vol. 8, no. 3, pp. 223-232, 1994.
    • (1994) Comput. Speech Lang. , vol.8 , Issue.3 , pp. 223-232
    • Ljolje, A.1
  • 2
    • 85017310268 scopus 로고    scopus 로고
    • A flexible method of creating HMM using block-diagonalization of covariance matrices
    • Sydney, Australia
    • R. Koshiba, M. Tachimori, and H. Kanazawa, "A flexible method of creating HMM using block-diagonalization of covariance matrices," in Proc. 5th Int. Conf. Spoken Lang. Process. ICSLP, Sydney, Australia, 1998, vol. 1.
    • (1998) Proc. 5th Int. Conf. Spoken Lang. Process. ICSLP , vol.1
    • Koshiba, R.1    Tachimori, M.2    Kanazawa, H.3
  • 3
    • 0032638856 scopus 로고    scopus 로고
    • Semi-tied covariance matrices for hidden Markov models
    • May
    • M. Gales, "Semi-tied covariance matrices for hidden Markov models," IEEE Trans. Speech Audio Process., vol. 7, no. 3, pp. 272-281, May 1999.
    • (1999) IEEE Trans. Speech Audio Process. , vol.7 , Issue.3 , pp. 272-281
    • Gales, M.1
  • 10
    • 0032658201 scopus 로고    scopus 로고
    • Efficient speech recognition using subvector quantization and discrete-mixture HMMs
    • V. Digalakis, S. Tsakalidis, and L. Neumeyer, "Efficient speech recognition using subvector quantization and discrete-mixture HMMs," in Proc. ICASSP, 1999, pp. 569-572.
    • (1999) Proc. ICASSP , pp. 569-572
    • Digalakis, V.1    Tsakalidis, S.2    Neumeyer, L.3
  • 11
    • 79957777498 scopus 로고    scopus 로고
    • Reviving discrete HMMs: The myth about the superiority of continuous HMMs
    • Budapest, Hungary
    • V. Digalakis, S. Tsakalidis, and L. Neumeyer, "Reviving discrete HMMs: The myth about the superiority of continuous HMMs," in EUROSPEECH'99, Budapest, Hungary, 1999, pp. 2463-2466.
    • (1999) Eurospeech'99 , pp. 2463-2466
    • Digalakis, V.1    Tsakalidis, S.2    Neumeyer, L.3
  • 12
    • 84937187378 scopus 로고    scopus 로고
    • Ph.D. dissertation Dept. of Elect. Computer. Eng., Comput. Sci. Div., Univ. California Berkeley, Berkeley
    • J. Bilmes, "Natural statistical models for automatic speech recognition," Ph.D. dissertation, Dept. of Elect. Computer. Eng., Comput. Sci. Div., Univ. California Berkeley, , Berkeley, 1999.
    • (1999) Natural Statistical Models for Automatic Speech Recognition
    • Bilmes, J.1
  • 13
    • 0033677172 scopus 로고    scopus 로고
    • Factored sparse inverse covariance matrices
    • J. Bilmes, "Factored sparse inverse covariance matrices," in Proc. ICASSP, 2000, pp. 1009-1012.
    • (2000) Proc. ICASSP , pp. 1009-1012
    • Bilmes, J.1
  • 14
    • 27944483362 scopus 로고    scopus 로고
    • Covariance decomposition in undirected Gaussian graphical models
    • DOI 10.1093/biomet/92.4.779
    • B. Jones and M. West, "Covariance decomposition in undirected Gaussian graphical models," Biometrika, vol. 92, no. 4, pp. 779-786, 2005. (Pubitemid 41681233)
    • (2005) Biometrika , vol.92 , Issue.4 , pp. 779-786
    • Jones, B.1    West, M.2
  • 16
    • 33646773551 scopus 로고    scopus 로고
    • Dialog act tagging using graphical models
    • Philadelphia, PA,Mar.
    • G. Ji and J. Bilmes, "Dialog act tagging using graphical models," in Proc. ICASSP, Philadelphia, PA, Mar. 2005, pp. 33-36.
    • (2005) Proc. ICASSP , pp. 33-36
    • Ji, G.1    Bilmes, J.2
  • 17
    • 70450175227 scopus 로고    scopus 로고
    • Graphical models for discrete hidden Markov models in speech recognition
    • A. Miguel, A. Ortega, L. Buera, and E. Lleida, "Graphical models for discrete hidden Markov models in speech recognition," in Proc. Interspeech, 2009.
    • (2009) Proc. Interspeech
    • Miguel, A.1    Ortega, A.2    Buera, L.3    Lleida, E.4
  • 18
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • May
    • C. K. Chow and C. N. Liu, "Approximating discrete probability distributions with dependence trees," IEEE Trans. Inf. Theory, vol. IT-14, no. 3, pp. 462-467, May 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.3 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 19
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 6, pp. 721-741, Nov. 1984. (Pubitemid 15453722)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman Stuart1    Geman Donald2
  • 20
    • 0032687294 scopus 로고    scopus 로고
    • Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood
    • Jul.
    • X. Descombes, R. D. Morris, J. Zerubia, and M. Berthod, "Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood," IEEE Trans. Image Process., vol. 8, no. 7, pp. 954-963, Jul. 1999.
    • (1999) IEEE Trans. Image Process. , vol.8 , Issue.7 , pp. 954-963
    • Descombes, X.1    Morris, R.D.2    Zerubia, J.3    Berthod, M.4
  • 22
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. 18th Int. Conf. Mach. Learn., 2001.
    • (2001) Proc. 18th Int. Conf. Mach. Learn.
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 23
    • 36649032857 scopus 로고    scopus 로고
    • Towards semi-supervised classification with Markov random fields
    • Carnegie Mellon Univ., Pittsburgh, PA
    • X. Zhu and Z. Ghahramani, "Towards semi-supervised classification with Markov random fields," Carnegie Mellon Univ., Pittsburgh, PA, 2002, Tech. Rep. CMU-CALD-02-106.
    • (2002) Tech. Rep. CMU-CALD- 02-106
    • Zhu, X.1    Ghahramani, Z.2
  • 25
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • W. Lam and F. Bacchus, "Learning Bayesian belief networks: An approach based on the MDL principle," Comput. Intell., vol. 10, pp. 269-293, 1994.
    • (1994) Comput. Intell. , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 28
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, no. 5, pp. 465-471, 1978.
    • (1978) Automatica , vol.14 , Issue.5 , pp. 465-471
    • Rissanen, J.1
  • 29
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. M. Chickering, "Learning Bayesian networks: The combination of knowledge and statistical data," Mach. Learn., vol. 20, pp. 197-243, 1995.
    • (1995) Mach. Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 30
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits, "A Bayesian method for the induction of probabilistic networks from data," Mach. Learn., vol. 9, no. 4, pp. 309-347, 1992.
    • (1992) Mach. Learn. , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 32
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • D. M. Chickering, "Optimal structure identification with greedy search," J. Mach. Learn. Res., vol. 3, pp. 507-554, 2002.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 33
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information-theory based approach
    • J. Cheng, R. Greiner, J. Kelly, D. A. Bell, and W. Liu, "Learning Bayesian networks from data: An information-theory based approach," Artif. Intell., vol. 137, pp. 43-90.
    • Artif. Intell. , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.A.4    Liu, W.5
  • 34
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • K. Sood and M. Koivisto, "Exact Bayesian structure discovery in Bayesian networks," J. Mach. Learn. Res., vol. 5, pp. 549-573, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 549-573
    • Sood, K.1    Koivisto, M.2
  • 36
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • N. Friedman, N. Friedman, D. Geiger, M. Goldszmidt, G. Provan, P. Langley, and P. Smyth, "Bayesian network classifiers," Mach. Learn., vol. 29, pp. 131-163, 1997. (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 37
    • 69949110656 scopus 로고    scopus 로고
    • On the classification performance of TAN and general Bayesian networks
    • M. G. Madden, "On the classification performance of TAN and general Bayesian networks," Knowl.-Based Syst., vol. 22, no. 7, pp. 489-495, 2009.
    • (2009) Knowl.-Based Syst. , vol.22 , Issue.7 , pp. 489-495
    • Madden, M.G.1
  • 39
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. R. Statist. Soc., vol. 39, no. 1, pp. 1-21, 1977.
    • (1977) J. R. Statist. Soc. , vol.39 , Issue.1 , pp. 1-21
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 40
    • 79957744805 scopus 로고    scopus 로고
    • Sparse Gaussian graphical models for speech recognition
    • P. Bell and S. King, "Sparse Gaussian graphical models for speech recognition," in Proc. Interspeech, 2007.
    • (2007) Proc. Interspeech
    • Bell, P.1    King, S.2
  • 41
    • 77955815755 scopus 로고    scopus 로고
    • Distributed Speech Recognition,Compression Algorithms ETSI ES 202 050 v1.1.1, Jul.
    • Distributed Speech Recognition; Advanced Front-End Feature Extraction Algorithm; Compression Algorithms, ETSI ES 202 050 v1.1.1, Jul. 2002.
    • (2002) Advanced Front-End Feature Extraction Algorithm
  • 43
    • 10044224253 scopus 로고    scopus 로고
    • Bernoulli mixture models for binary images
    • Cambridge, U.K. Aug.
    • A. Juan and E. Vidal, "Bernoulli mixture models for binary images," in Proc. ICPR, Cambridge, U.K., Aug. 2004, vol. 2.
    • (2004) Proc. ICPR , vol.2
    • Juan, A.1    Vidal, E.2
  • 47
    • 0025493667 scopus 로고
    • The segmental k-means algorithm for estimating the parameters of hidden Markov models
    • Sep.
    • B. H. Juang and L. R. Rabiner, "The segmental k-means algorithm for estimating the parameters of hidden Markov models," IEEE Trans. Accoust., Speech, Signal Process., vol. 38, no. 9, pp. 1639-1641, Sep. 1990.
    • (1990) IEEE Trans. Accoust., Speech, Signal Process. , vol.38 , Issue.9 , pp. 1639-1641
    • Juang, B.H.1    Rabiner, L.R.2
  • 49
    • 0038669544 scopus 로고    scopus 로고
    • The AURORA experimental framework for the performance evaluation of speech recognition systems under noisy conditions
    • Paris, France,Sep.
    • H. G. Hirsch and D. Pearce, "The AURORA experimental framework for the performance evaluation of speech recognition systems under noisy conditions," in Proc. ISCA ITRW ASR2000 Automatic Speech Recognition: Challenges for the Next Millennium, Paris, France, Sep. 2000, pp. 18-20.
    • (2000) Proc. ISCA ITRW ASR2000 Automatic Speech Recognition: Challenges for the Next Millennium , pp. 18-20
    • Hirsch, H.G.1    Pearce, D.2
  • 50
    • 0001473437 scopus 로고
    • On the estimation of probability density functions and mode
    • E. Parzen, "On the estimation of probability density functions and mode," Ann. Math. Statist., vol. 33, pp. 1065-1076, 1962.
    • (1962) Ann. Math. Statist. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 51
    • 68549140008 scopus 로고    scopus 로고
    • A novel framework and training algorithm for variable-parameter hidden Markov models
    • Sep.
    • D. Yu, L. Deng, Y. Gong, and A. Acero, "A novel framework and training algorithm for variable-parameter hidden Markov models," IEEE Trans. Audio, Speech, Lang. Process., vol. 17, no. 7, pp. 1348-1360, Sep. 2009.
    • (2009) IEEE Trans. Audio, Speech, Lang. Process. , vol.17 , Issue.7 , pp. 1348-1360
    • Yu, D.1    Deng, L.2    Gong, Y.3    Acero, A.4
  • 52
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian network classifiers," Mach. Learn., vol. 29, pp. 131-163, 1997. (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 54
    • 85009089651 scopus 로고    scopus 로고
    • Feature extraction from time-frequency matrices for robust speech recognition
    • Aalborg, Denmark,Sep.
    • J. C. Segura, M. C. Benítez, A. de la Torre, and A. Rubio, "Feature extraction from time-frequency matrices for robust speech recognition," in Proc. Eurospeech, Aalborg, Denmark, Sep. 2001, pp. 1625-1628.
    • (2001) Proc. Eurospeech , pp. 1625-1628
    • Segura, J.C.1    Benítez, M.C.2    De La Torre, A.3    Rubio, A.4
  • 55
    • 70450189378 scopus 로고    scopus 로고
    • Local projections and support vector based feature selection in speech recognition
    • Brighton, U.K.
    • A. Miguel, A. Ortega, L. Buera, and E. Lleida, "Local projections and support vector based feature selection in speech recognition," in Proc. Interspeech, Brighton, U.K., 2009.
    • (2009) Proc. Interspeech
    • Miguel, A.1    Ortega, A.2    Buera, L.3    Lleida, E.4
  • 56
    • 34249932867 scopus 로고    scopus 로고
    • Articulatory feature recognition using dynamic Bayesian networks
    • DOI 10.1016/j.csl.2007.03.002, PII S0885230807000204
    • J. Frankel, M. Wester, and S. King, "Articulatory feature recognition using dynamic Bayesian networks," Comput. Speech Lang., vol. 21, no. 4, pp. 620-640, Oct. 2007. (Pubitemid 46880190)
    • (2007) Computer Speech and Language , vol.21 , Issue.4 , pp. 620-640
    • Frankel, J.1    Wester, M.2    King, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.