메뉴 건너뛰기




Volumn 42, Issue 7, 2002, Pages 975-1009

A genetic-designed beta basis function neural network for multi-variable functions approximation

Author keywords

Beta function; Functions approximation; Genetic algorithms; Learning; Neural networks

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; FUNCTIONS; MATHEMATICAL MODELS; MULTIVARIABLE CONTROL SYSTEMS; PARAMETER ESTIMATION;

EID: 10444235281     PISSN: 02329298     EISSN: 10294902     Source Type: Journal    
DOI: 10.1080/716067203     Document Type: Article
Times cited : (24)

References (35)
  • 1
    • 0009806356 scopus 로고    scopus 로고
    • The beta system: Toward a change in our use of neuro-fuzzy systems
    • (June), Invited paper
    • A.M. Alimi (June 2000). The beta system: toward a change in our use of neuro-fuzzy systems. Management, pp. 15-19, Invited paper.
    • (2000) Management , pp. 15-19
    • Alimi, A.M.1
  • 2
    • 0041311372 scopus 로고    scopus 로고
    • Beta fuzzy logic systems: Approximation properties in the SISO case
    • Special issue edited by D. Rutkowska and L.A. Zadeh
    • A.M. Alimi, R. Hassine and M. Selmi (2000). Beta fuzzy logic systems: approximation properties in the SISO case. Int. J. Applied Mathematics and Computer Science, Special issue edited by D. Rutkowska and L.A. Zadeh, 10(4), 101-119.
    • (2000) Int. J. Applied Mathematics and Computer Science , vol.10 , Issue.4 , pp. 101-119
    • Alimi, A.M.1    Hassine, R.2    Selmi, M.3
  • 5
    • 0012854275 scopus 로고    scopus 로고
    • Beta fuzzy basis functions for the design of universal robust neuro-fuzzy controllers
    • (February). Nabeul, Tunisia
    • M.A. Alimi (February 1997b). Beta fuzzy basis functions for the design of universal robust neuro-fuzzy controllers. Proc. Seminaire sur la Commande Robuste and ses Applications: SCRA'97, pp. C1-C5. Nabeul, Tunisia.
    • (1997) Proc. Seminaire sur la Commande Robuste and ses Applications: SCRA'97
    • Alimi, M.A.1
  • 8
    • 0028835062 scopus 로고
    • Radial basis function network configuration using genetic algorithms
    • S.A. Billings and G.L. Zheng (1995). Radial basis function network configuration using genetic algorithms. Neural Networks, 8(6), 877-890.
    • (1995) Neural Networks , vol.8 , Issue.6 , pp. 877-890
    • Billings, S.A.1    Zheng, G.L.2
  • 15
    • 0030142632 scopus 로고    scopus 로고
    • Extended the functional equivalence of radial basis functions networks and fuzzy inference systems
    • K.J. Hunt, R. Haas and R. Murray-Smith (1996). Extended the functional equivalence of radial basis functions networks and fuzzy inference systems. IEEE Trans. Neural Networks, 7, 776-781.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 776-781
    • Hunt, K.J.1    Haas, R.2    Murray-Smith, R.3
  • 17
    • 0026373082 scopus 로고
    • Location training for radial basis function networks: Towards solving the hidden unit problem
    • T. Holcomb and M. Morari (1991). Location training for radial basis function networks: towards solving the hidden unit problem. Proc. Amer. Control Conf., pp. 2331-2336.
    • (1991) Proc. Amer. Control Conf. , pp. 2331-2336
    • Holcomb, T.1    Morari, M.2
  • 18
    • 84866994700 scopus 로고    scopus 로고
    • Automatic generation of adequate parameters in artificial cellular neural networks for optimization with genetic algorithm
    • Australia
    • D. Hiratsu and T. Nagao (1998). Automatic generation of adequate parameters in artificial cellular neural networks for optimization with genetic algorithm. ICIS' 98 August, pp. 2331-2336, Australia.
    • (1998) ICIS' 98 August , pp. 2331-2336
    • Hiratsu, D.1    Nagao, T.2
  • 19
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis functions networks and fuzzy inference systems
    • J.S.R. Jang and C.T. Sun (1993). Functional equivalence between radial basis functions networks and fuzzy inference systems. IEEE Trans. Neural Networks, 4, 156-158.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 156-158
    • Jang, J.S.R.1    Sun, C.T.2
  • 20
    • 0009391576 scopus 로고
    • Application of genetic algorithms to the training of higher order neural networks
    • Springer-Verlag London Limited
    • D.J. Jonson and J.F. Frenzel (1992). Application of genetic algorithms to the training of higher order neural networks. Journal of Systems Engineering, 2, 272-276. Springer-Verlag London Limited.
    • (1992) Journal of Systems Engineering , vol.2 , pp. 272-276
    • Jonson, D.J.1    Frenzel, J.F.2
  • 21
    • 0025839504 scopus 로고
    • A gaussian potential function networks with hierarchically self-organizing learning
    • S. Lee and M.K. Rhee (1991). A gaussian potential function networks with hierarchically self-organizing learning. Neural Networks, 4, 207-224.
    • (1991) Neural Networks , vol.4 , pp. 207-224
    • Lee, S.1    Rhee, M.K.2
  • 22
    • 0001991994 scopus 로고
    • Some aspects of radial basis function approximation
    • W.A. Light (1992). Some aspects of radial basis function approximation. Approx, Theory, Spline Functions Applic., 356, 163-190.
    • (1992) Approx, Theory, Spline Functions Applic. , vol.356 , pp. 163-190
    • Light, W.A.1
  • 23
    • 33746332748 scopus 로고    scopus 로고
    • A biased genetic algorithm applied to neural network design
    • (April). Hammamet
    • E.P. Maillard and D. Gueriot (April 1998). A biased genetic algorithm applied to neural network design. Proc. CESA' 98, 4, 23-27. Hammamet.
    • (1998) Proc. CESA' 98 , vol.4 , pp. 23-27
    • Maillard, E.P.1    Gueriot, D.2
  • 25
    • 0030382130 scopus 로고    scopus 로고
    • What is the best shape for fuzzy set in function approximation?
    • S. Mitaim and B. Kosko (1996). what is the best shape for fuzzy set in function approximation? IEEE, 3, 1237-1243.
    • (1996) IEEE , vol.3 , pp. 1237-1243
    • Mitaim, S.1    Kosko, B.2
  • 27
    • 0001739142 scopus 로고
    • Radial basis function in 1990
    • M.J.D. Powell (1992). Radial basis function in 1990. Adv. Number Anal., 2, 105-210.
    • (1992) Adv. Number Anal. , vol.2 , pp. 105-210
    • Powell, M.J.D.1
  • 28
    • 0032201792 scopus 로고    scopus 로고
    • Genetic algorithm based methodology to generate automatically optimal fuzzy system
    • November
    • A. Rahmouni and M. Benmohamed (November 1998). Genetic algorithm based methodology to generate automatically optimal fuzzy system. IEE Proc-Control Theory Appl., 145 (6), 583-586.
    • (1998) IEE Proc-control Theory Appl. , vol.145 , Issue.6 , pp. 583-586
    • Rahmouni, A.1    Benmohamed, M.2
  • 31
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximations, and orthogonal least-squares learning
    • L.X. Wang and J.M. Mendel (1992). Fuzzy basis functions, universal approximations, and orthogonal least-squares learning. IEEE Trans. Neural Networks, 3, 807-814.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 32
    • 0030197198 scopus 로고    scopus 로고
    • Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction
    • B.A. Whitechead and T.D. Choatc (1996). Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Trans Neural Networks, 7(4), 869-880.
    • (1996) IEEE Trans Neural Networks , vol.7 , Issue.4 , pp. 869-880
    • Whitechead, B.A.1    Choatc, T.D.2
  • 33
    • 0027653233 scopus 로고
    • Evolving artificial neural networks
    • X. Yao (1993). Evolving artificial neural networks. Int. J. Neural Systems, 4(3), 203-222.
    • (1993) Int. J. Neural Systems , vol.4 , Issue.3 , pp. 203-222
    • Yao, X.1
  • 34
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • X. Yao and Y. Liu (1997). A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Networks, 8(3), 694-713.
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 35
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao (1999). Evolving artificial neural networks. IEEE Proc. Computational Intelligence, 87(9), 1423-1447.
    • (1999) IEEE Proc. Computational Intelligence , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.