메뉴 건너뛰기




Volumn 35, Issue 6, 2011, Pages 1110-1118

A direct sampling particle filter from approximate conditional density function supported on constrained state space

Author keywords

Maximum a posteriori estimation; Particle filter; State estimation

Indexed keywords

ACCEPTANCE/REJECTION; CONDITIONAL DENSITY; CONDITIONAL DENSITY FUNCTION; CONDITIONAL PROBABILITY DENSITY; CONSTRAINED STATE; DIRECT SAMPLING; ENSEMBLE KALMAN FILTER; ESTIMATION PROBLEM; GAUSSIANS; INEQUALITY CONSTRAINT; MAXIMUM A POSTERIORI ESTIMATION; NON-LINEAR CONSTRAINTS; PARTICLE FILTER; PROJECTION METHOD; STATE VECTOR; WEIGHTED LEAST SQUARES;

EID: 79955470290     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2010.07.022     Document Type: Article
Times cited : (10)

References (26)
  • 2
    • 79955477768 scopus 로고    scopus 로고
    • Nonlinear model predictive control with particle filter for state estimation. M.S. thesis, Cleveland State University, Cleveland, OH.
    • Botchu, S. (2006). Nonlinear model predictive control with particle filter for state estimation. M.S. thesis, Cleveland State University, Cleveland, OH.
    • (2006)
    • Botchu, S.1
  • 3
    • 3042733565 scopus 로고    scopus 로고
    • Bayesian estimation via sequential Monte Carlo sampling: unconstrained nonlinear dynamic systems
    • Chen W.S., Bakshi B.R., Goel P.K., Ungarala S. Bayesian estimation via sequential Monte Carlo sampling: unconstrained nonlinear dynamic systems. Industrial & Engineering Chemistry Research 2004, 43:4012-4025.
    • (2004) Industrial & Engineering Chemistry Research , vol.43 , pp. 4012-4025
    • Chen, W.S.1    Bakshi, B.R.2    Goel, P.K.3    Ungarala, S.4
  • 4
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon N., Salmond D.J., Smith A.F.M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Processinds-F 1993, 140(2):107-113.
    • (1993) IEE Processinds-F , vol.140 , Issue.2 , pp. 107-113
    • Gordon, N.1    Salmond, D.J.2    Smith, A.F.M.3
  • 5
    • 79955473377 scopus 로고    scopus 로고
    • A critical evaluation of extended Kalman filtering and moving horizon estimation. Technical report, TX-WI Modeling and Control Consortium.
    • Haseltine, E. L., & Rawlings, J. B. (2003). A critical evaluation of extended Kalman filtering and moving horizon estimation. Technical report, TX-WI Modeling and Control Consortium. http://jbrwww.che.wisc.edu/tech-reports/twmcc-2002-03.pdf.
    • (2003)
    • Haseltine, E.L.1    Rawlings, J.B.2
  • 6
  • 7
    • 44649122952 scopus 로고    scopus 로고
    • Applying the unscented Kalman filter for nonlinear state estimation
    • Kandepu R., Foss B., Imsland L. Applying the unscented Kalman filter for nonlinear state estimation. Journal of Process Control 2008, 18:753-768.
    • (2008) Journal of Process Control , vol.18 , pp. 753-768
    • Kandepu, R.1    Foss, B.2    Imsland, L.3
  • 8
    • 67349245537 scopus 로고    scopus 로고
    • Constrained nonlinear state estimation based on the UKF approach
    • Kolas S., Foss B.A., Schei T.S. Constrained nonlinear state estimation based on the UKF approach. Computers & Chemical Engineering 2009, 33:1386-1401.
    • (2009) Computers & Chemical Engineering , vol.33 , pp. 1386-1401
    • Kolas, S.1    Foss, B.A.2    Schei, T.S.3
  • 9
    • 34547583106 scopus 로고    scopus 로고
    • Bayesian estimation via sequential Monte Carlo sampling-Constrained dynamic systems
    • Lang L., Chen W.S., Bakshi B.R., Goel P.K., Ungarala S. Bayesian estimation via sequential Monte Carlo sampling-Constrained dynamic systems. Automatica 2007, 43(9):1615-1622.
    • (2007) Automatica , vol.43 , Issue.9 , pp. 1615-1622
    • Lang, L.1    Chen, W.S.2    Bakshi, B.R.3    Goel, P.K.4    Ungarala, S.5
  • 10
    • 77953939443 scopus 로고    scopus 로고
    • A smoothing based method to improve performance of sequential Monte Carlo estimation under poor prior.
    • Lang L., Goel P.K., Bakshi B.R. A smoothing based method to improve performance of sequential Monte Carlo estimation under poor prior. Chemical process control, CPC7 2006.
    • (2006) Chemical process control, CPC7
    • Lang, L.1    Goel, P.K.2    Bakshi, B.R.3
  • 11
    • 33645643833 scopus 로고    scopus 로고
    • Estimation in nonlinear dynamic systems via Monte Carlo sampling versus moving horizon estimation-Complementary or competitive?
    • Lang L., Zhang X., Goel P.K., Bakshi B.R. Estimation in nonlinear dynamic systems via Monte Carlo sampling versus moving horizon estimation-Complementary or competitive?. Annual meeting of AIChE 2005.
    • (2005) Annual meeting of AIChE
    • Lang, L.1    Zhang, X.2    Goel, P.K.3    Bakshi, B.R.4
  • 12
    • 63249131100 scopus 로고    scopus 로고
    • Reply to comments on " robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation" (URNDDR)
    • Narasimhan S., Rengaswamy R. Reply to comments on " robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation" (URNDDR). Journal of Process Control 2009, 19:719-721.
    • (2009) Journal of Process Control , vol.19 , pp. 719-721
    • Narasimhan, S.1    Rengaswamy, R.2
  • 15
    • 58749086947 scopus 로고    scopus 로고
    • Computation of arrival cost for moving horizon estimation via unscented Kalman filtering
    • Qu C., Hahn J. Computation of arrival cost for moving horizon estimation via unscented Kalman filtering. Journal of Process Control 2009, 19:358-363.
    • (2009) Journal of Process Control , vol.19 , pp. 358-363
    • Qu, C.1    Hahn, J.2
  • 16
    • 46449126261 scopus 로고    scopus 로고
    • Improved state estimation using a combination of moving horizon estimator and particle filters
    • Rajamani M.R., Rawlings J.B. Improved state estimation using a combination of moving horizon estimator and particle filters. Proceedings of the American control conference 2007, 4443-4444.
    • (2007) Proceedings of the American control conference , pp. 4443-4444
    • Rajamani, M.R.1    Rawlings, J.B.2
  • 17
    • 0038165025 scopus 로고    scopus 로고
    • Constrained process monitoring: Moving-horizon approach
    • Rao C.V., Rawlings J.B. Constrained process monitoring: Moving-horizon approach. AIChE Journal 2002, 48(1):97-109.
    • (2002) AIChE Journal , vol.48 , Issue.1 , pp. 97-109
    • Rao, C.V.1    Rawlings, J.B.2
  • 19
    • 0000241249 scopus 로고
    • A least squares formulation for state estimation
    • Robertson D.G., Lee J.H. A least squares formulation for state estimation. Journal of Process Control 1995, 5(4):291-299.
    • (1995) Journal of Process Control , vol.5 , Issue.4 , pp. 291-299
    • Robertson, D.G.1    Lee, J.H.2
  • 20
    • 0030215706 scopus 로고    scopus 로고
    • A moving horizon-based approach to least squares estimation
    • Robertson D.G., Lee J.H., Rawlings J.B. A moving horizon-based approach to least squares estimation. AIChE Journal 1996, 42(8):2209.
    • (1996) AIChE Journal , vol.42 , Issue.8 , pp. 2209
    • Robertson, D.G.1    Lee, J.H.2    Rawlings, J.B.3
  • 21
    • 73649124170 scopus 로고    scopus 로고
    • Constrained Bayesian state estimation-A comparative study and a new particle filter based approach
    • Shao X., Huang B., Lee J.M. Constrained Bayesian state estimation-A comparative study and a new particle filter based approach. Journal of Process Control 2010, 20:143-157.
    • (2010) Journal of Process Control , vol.20 , pp. 143-157
    • Shao, X.1    Huang, B.2    Lee, J.M.3
  • 22
    • 77955824141 scopus 로고    scopus 로고
    • Kalman filtering with state constraints: A survey of linear and nonlinear algorithms. IET Control Theory Applications.
    • Simon, D. (2010). Kalman filtering with state constraints: A survey of linear and nonlinear algorithms. IET Control Theory Applications, 4(8), 1303-1318.
    • (2010) , vol.4 , Issue.8 , pp. 1303-1318
    • Simon, D.1
  • 24
    • 72049097673 scopus 로고    scopus 로고
    • Computing arrival cost parameters in moving horizon estimation using sampling based methods
    • Ungarala S. Computing arrival cost parameters in moving horizon estimation using sampling based methods. Journal of Process Control 2009, 19:1576-1588.
    • (2009) Journal of Process Control , vol.19 , pp. 1576-1588
    • Ungarala, S.1
  • 26
    • 33750313512 scopus 로고    scopus 로고
    • Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation
    • Vachhani P., Narasimhan S., Rengaswamy R. Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation. Journal of Process Control 2006, 16:1075-1086.
    • (2006) Journal of Process Control , vol.16 , pp. 1075-1086
    • Vachhani, P.1    Narasimhan, S.2    Rengaswamy, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.