메뉴 건너뛰기




Volumn 20, Issue 2, 2010, Pages 143-157

Constrained Bayesian state estimation - A comparative study and a new particle filter based approach

Author keywords

Bayesian; Constraints; Non Gaussian; Nonlinear; Particle Filter; State estimation

Indexed keywords

ACCEPTANCE/REJECTION; BAYESIAN; BAYESIAN ESTIMATORS; BAYESIAN METHODS; BAYESIAN STATE ESTIMATION; COMPARATIVE STUDIES; CONSTRAINED SYSTEMS; CONSTRAINTS HANDLING; EXTENSIVE SIMULATIONS; NON-GAUSSIAN; NON-LINEAR MODEL; NONLINEAR AND NON-GAUSSIAN; OPTIMIZATION STRATEGY; OPTIMIZATION TECHNIQUES; PARTICLE FILTER; PRIOR INFORMATION;

EID: 73649124170     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2009.11.002     Document Type: Article
Times cited : (132)

References (43)
  • 1
    • 0027539898 scopus 로고
    • The iterated Kalman filter update as a Gauss-Newton method
    • Bell F., and Cathey B. The iterated Kalman filter update as a Gauss-Newton method. IEEE Transactions on Automatic Control 38 2 (1993) 294-297
    • (1993) IEEE Transactions on Automatic Control , vol.38 , Issue.2 , pp. 294-297
    • Bell, F.1    Cathey, B.2
  • 2
    • 4243583364 scopus 로고
    • A square root formulation of the Kalman schmidt filter
    • Bellatoni J., and Dodge K. A square root formulation of the Kalman schmidt filter. AIAA Journal 5 (1967) 1309-1314
    • (1967) AIAA Journal , vol.5 , pp. 1309-1314
    • Bellatoni, J.1    Dodge, K.2
  • 3
    • 11844302910 scopus 로고    scopus 로고
    • Resampling algorithms for particle filters: a computational complexity perspective
    • Boloc M., Djuric P., and Hong S. Resampling algorithms for particle filters: a computational complexity perspective. EURASIP Journal of Applied Signal Processing 15 (2004) 2267-2277
    • (2004) EURASIP Journal of Applied Signal Processing , vol.15 , pp. 2267-2277
    • Boloc, M.1    Djuric, P.2    Hong, S.3
  • 4
    • 3042733565 scopus 로고    scopus 로고
    • Bayesian estimation via sequential Monte Carlo sampling: unconstrained nonlinear dynamic systems
    • Chen W., Bakshi B., Goel P., and Ungarala S. Bayesian estimation via sequential Monte Carlo sampling: unconstrained nonlinear dynamic systems. Industrial & Engineering Chemistry Research 43 (2004) 4012-4025
    • (2004) Industrial & Engineering Chemistry Research , vol.43 , pp. 4012-4025
    • Chen, W.1    Bakshi, B.2    Goel, P.3    Ungarala, S.4
  • 6
    • 23844456306 scopus 로고    scopus 로고
    • Nonlinear filters: beyond the Kalman filter
    • Daum F. Nonlinear filters: beyond the Kalman filter. IEEE A&E Systems Magazine 20 8 (2005) 57-69
    • (2005) IEEE A&E Systems Magazine , vol.20 , Issue.8 , pp. 57-69
    • Daum, F.1
  • 7
    • 0003838908 scopus 로고    scopus 로고
    • On Sequential Simulation-based Methods for Bayesian Filtering
    • Technical Report, Department of Engineering, Cambridge University
    • A. Doucet, S. Godsill, On Sequential Simulation-based Methods for Bayesian Filtering, Technical Report, Department of Engineering, Cambridge University, 1998.
    • (1998)
    • Doucet, A.1    Godsill, S.2
  • 9
    • 67651187659 scopus 로고    scopus 로고
    • Kalman Filtering with Equality and Inequality State Constraints
    • Technical Report, Oxford University Computing Laboratory
    • N. Gupta, R. Hauser, Kalman Filtering with Equality and Inequality State Constraints, Technical Report, Oxford University Computing Laboratory, 2007.
    • (2007)
    • Gupta, N.1    Hauser, R.2
  • 10
    • 84874286884 scopus 로고
    • Monte Carlo techniques to estimate the conditional expectation in multistage nonlinear filtering
    • Handschin J.E., and Mayne D.Q. Monte Carlo techniques to estimate the conditional expectation in multistage nonlinear filtering. International Journal of Control 9 5 (1969) 547-559
    • (1969) International Journal of Control , vol.9 , Issue.5 , pp. 547-559
    • Handschin, J.E.1    Mayne, D.Q.2
  • 11
    • 18144401714 scopus 로고    scopus 로고
    • Critical evaluation of extended Kalman filtering and moving-horizon estimation
    • Haseltine E.L., and Rawlings J.B. Critical evaluation of extended Kalman filtering and moving-horizon estimation. Industrial & Engineering Chemistry Research 44 (2005) 2451-2460
    • (2005) Industrial & Engineering Chemistry Research , vol.44 , pp. 2451-2460
    • Haseltine, E.L.1    Rawlings, J.B.2
  • 12
    • 84916593381 scopus 로고
    • A Bayesian approach to problems in stochastic estimation and control
    • Ho Y.C., and Lee R.C.K. A Bayesian approach to problems in stochastic estimation and control. IEEE Transactions on Automatic Control 9 5 (1964) 333-339
    • (1964) IEEE Transactions on Automatic Control , vol.9 , Issue.5 , pp. 333-339
    • Ho, Y.C.1    Lee, R.C.K.2
  • 14
    • 34249794868 scopus 로고    scopus 로고
    • On Kalman filtering with nonlinear equality constraints
    • Julier S., and LaViola J. On Kalman filtering with nonlinear equality constraints. IEEE Transactions on Signal Processing 55 6 (2007) 2774-2784
    • (2007) IEEE Transactions on Signal Processing , vol.55 , Issue.6 , pp. 2774-2784
    • Julier, S.1    LaViola, J.2
  • 15
    • 21244437999 scopus 로고    scopus 로고
    • Unscented filtering and nonlinear estimation
    • Julier S., and Uhlmann J. Unscented filtering and nonlinear estimation. Proceedings of the IEEE 92 (2004) 401-422
    • (2004) Proceedings of the IEEE , vol.92 , pp. 401-422
    • Julier, S.1    Uhlmann, J.2
  • 16
    • 44649122952 scopus 로고    scopus 로고
    • Applying the unscented Kalman filter for nonlinear state estimation
    • Kandepu R., Foss B., and Imsland L. Applying the unscented Kalman filter for nonlinear state estimation. Journal of Process Control 18 (2008) 753-768
    • (2008) Journal of Process Control , vol.18 , pp. 753-768
    • Kandepu, R.1    Foss, B.2    Imsland, L.3
  • 18
    • 67349245537 scopus 로고    scopus 로고
    • Constrained nonlinear state estimation based on the UKF approach
    • Kolås S., Foss B., and Schei T. Constrained nonlinear state estimation based on the UKF approach. Computers & Chemical Engineering 33 8 (2009) 1386-1401
    • (2009) Computers & Chemical Engineering , vol.33 , Issue.8 , pp. 1386-1401
    • Kolås, S.1    Foss, B.2    Schei, T.3
  • 23
    • 34547583106 scopus 로고    scopus 로고
    • Bayesian estimation via sequential Monte Carlo sampling-constrained dynamic systems
    • Lang L., Chen W., Bakshi B., Goel P., and Ungarala S. Bayesian estimation via sequential Monte Carlo sampling-constrained dynamic systems. Automatica 43 (2007) 1615-1622
    • (2007) Automatica , vol.43 , pp. 1615-1622
    • Lang, L.1    Chen, W.2    Bakshi, B.3    Goel, P.4    Ungarala, S.5
  • 28
    • 0038165025 scopus 로고    scopus 로고
    • Constrained process monitoring: moving-horizon approach
    • Rao C., and Rawlings J. Constrained process monitoring: moving-horizon approach. AIChE Journal 48 (2002) 97-109
    • (2002) AIChE Journal , vol.48 , pp. 97-109
    • Rao, C.1    Rawlings, J.2
  • 29
    • 0035480348 scopus 로고    scopus 로고
    • Constrained linear state estimation moving horizon approach
    • Rao C.V., Rawlings J.B., and Lee J.H. Constrained linear state estimation moving horizon approach. Automatica 37 10 (2001) 1619-1628
    • (2001) Automatica , vol.37 , Issue.10 , pp. 1619-1628
    • Rao, C.V.1    Rawlings, J.B.2    Lee, J.H.3
  • 31
    • 0030215706 scopus 로고    scopus 로고
    • A moving horizon-based approach for least-squares state estimation
    • Robertson D.G., Lee J.H., and Rawlings J.B. A moving horizon-based approach for least-squares state estimation. AIChE Journal 42 8 (1996) 2209-2224
    • (1996) AIChE Journal , vol.42 , Issue.8 , pp. 2209-2224
    • Robertson, D.G.1    Lee, J.H.2    Rawlings, J.B.3
  • 32
    • 0036642674 scopus 로고    scopus 로고
    • On the use of constraints in least squares estimation and control
    • Robertsonb D.G., and Lee J.H. On the use of constraints in least squares estimation and control. Automatica 38 7 (2002) 1113-1123
    • (2002) Automatica , vol.38 , Issue.7 , pp. 1113-1123
    • Robertsonb, D.G.1    Lee, J.H.2
  • 39
    • 33750313512 scopus 로고    scopus 로고
    • Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation
    • Vachhani P., Narasimhan S., and Rengaswamy R. Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation. Journal of Process Control 16 (2006) 1075-1086
    • (2006) Journal of Process Control , vol.16 , pp. 1075-1086
    • Vachhani, P.1    Narasimhan, S.2    Rengaswamy, R.3
  • 40
    • 15944413431 scopus 로고    scopus 로고
    • Recursive estimation in constrained nonlinear dynamical systems
    • Vachhani P., Rengaswamy R., Gangwal V., and Narasimhan S. Recursive estimation in constrained nonlinear dynamical systems. AIChE Journal 51 (2004) 946-959
    • (2004) AIChE Journal , vol.51 , pp. 946-959
    • Vachhani, P.1    Rengaswamy, R.2    Gangwal, V.3    Narasimhan, S.4
  • 42
    • 0004286947 scopus 로고    scopus 로고
    • The Unscented Particle Filter
    • Technical Report, Cambridge University Engineering Department
    • R. vander Merwe, A. Doucet, N. deFreitas, E. Wan, The Unscented Particle Filter, Technical Report, Cambridge University Engineering Department, 2000.
    • (2000)
    • vander Merwe, R.1    Doucet, A.2    deFreitas, N.3    Wan, E.4
  • 43
    • 52049101562 scopus 로고    scopus 로고
    • A fast moving horizon estimation algorithm based on nonlinear programming sensitivity
    • Zavala V., Larid C., and Biegler L. A fast moving horizon estimation algorithm based on nonlinear programming sensitivity. Journal of Process Control 18 9 (2008) 876-884
    • (2008) Journal of Process Control , vol.18 , Issue.9 , pp. 876-884
    • Zavala, V.1    Larid, C.2    Biegler, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.