메뉴 건너뛰기




Volumn 64, Issue 3, 2008, Pages 921-930

Variable selection in penalized model-based clustering via regularization on grouped parameters

Author keywords

BIC; Diagonal covariance; EM algorithm; High dimension but low sample size; Microarray gene expression; Mixture model; Penalized likelihood

Indexed keywords

BIC; DIAGONAL COVARIANCE; EM ALGORITHMS; HIGH-DIMENSION BUT LOW-SAMPLE SIZE; HIGHER DIMENSIONS; MICROARRAY GENE EXPRESSION; MIXTURE MODELING; PENALIZED LIKELIHOOD; PENALIZED-LIKELIHOOD; SAMPLE SIZES;

EID: 49749148013     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2007.00955.x     Document Type: Article
Times cited : (37)

References (34)
  • 3
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • and
    • Dudoit, S., Fridlyand, J., and Speed, T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97, 77 87.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 5
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • and
    • Eisen, M., Spellman, P., Brown, P., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. PNAS 95, 14863 14868.
    • (1998) PNAS , vol.95 , pp. 14863-14868
    • Eisen, M.1    Spellman, P.2    Brown, P.3    Botstein, D.4
  • 7
    • 0036188158 scopus 로고    scopus 로고
    • Mixture modeling of gene expression data from microarray experiments
    • and
    • Ghosh, D. and Chinnaiyan, A. M. (2002). Mixture modeling of gene expression data from microarray experiments. Bioinformatics 18, 275 286.
    • (2002) Bioinformatics , vol.18 , pp. 275-286
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 10
    • 33644863012 scopus 로고    scopus 로고
    • Subset clustering of binary sequences, with an application to genomic abnormality data
    • Hoff, P. D. (2005). Subset clustering of binary sequences, with an application to genomic abnormality data. Biometrics 61, 1027 1036.
    • (2005) Biometrics , vol.61 , pp. 1027-1036
    • Hoff, P.D.1
  • 11
    • 33645992615 scopus 로고    scopus 로고
    • Model-based subspace clustering
    • Hoff, P. D. (2006). Model-based subspace clustering. Bayesian Analysis 1, 321 344.
    • (2006) Bayesian Analysis , vol.1 , pp. 321-344
    • Hoff, P.D.1
  • 12
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto Encyclopedia of Genes and Genomes
    • and
    • Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28, 27 30.
    • (2000) Nucleic Acids Research , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 13
    • 33845734547 scopus 로고    scopus 로고
    • Variable selection in clustering via Dirichlet process mixture models
    • and
    • Kim, S., Tadesse, M. G., and Vannucci, M. (2006). Variable selection in clustering via Dirichlet process mixture models. Biometrika 93, 877 893.
    • (2006) Biometrika , vol.93 , pp. 877-893
    • Kim, S.1    Tadesse, M.G.2    Vannucci, M.3
  • 14
    • 18144444239 scopus 로고    scopus 로고
    • Cluster-Rasch models for microarray gene expression data
    • and. research0031.1-0031.13
    • Li H. and Hong F. (2001). Cluster-Rasch models for microarray gene expression data. Genome Biology 2, research0031.1-0031.13.
    • (2001) Genome Biology , vol.2
    • Li, H.1    Hong, F.2
  • 15
    • 15044339834 scopus 로고    scopus 로고
    • Bayesian clustering with variable and transformation selection (with discussion)
    • and
    • Liu, J. S., Zhang, J. L., Palumbo, M. J., and Lawrence, C. E. (2003). Bayesian clustering with variable and transformation selection (with discussion). Bayesian Statistics 7, 249 275.
    • (2003) Bayesian Statistics , vol.7 , pp. 249-275
    • Liu, J.S.1    Zhang, J.L.2    Palumbo, M.J.3    Lawrence, C.E.4
  • 17
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • and
    • McLachlan, G. J., Bean, R. W., and Peel, D. (2002). A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18, 413 422.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 18
    • 34249029861 scopus 로고    scopus 로고
    • Penalized model-based clustering with application to variable selection
    • and
    • Pan, W. and Shen, X. (2007). Penalized model-based clustering with application to variable selection. Journal of Machine Learning Research 8, 1145 1164.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1145-1164
    • Pan, W.1    Shen, X.2
  • 19
    • 33750022956 scopus 로고    scopus 로고
    • Semi-supervised learning via penalized mixture model with application to microarray sample classification
    • and
    • Pan, W., Shen, X., Jiang, A., and Hebbel, R. P. (2006). Semi-supervised learning via penalized mixture model with application to microarray sample classification Bioinformatics 22, 2388 2395.
    • (2006) Bioinformatics , vol.22 , pp. 2388-2395
    • Pan, W.1    Shen, X.2    Jiang, A.3    Hebbel, R.P.4
  • 20
    • 34547849507 scopus 로고    scopus 로고
    • An L1 regularization-path algorithm for generalized linear models
    • and
    • Park, M. and Hastie, T. (2007). An L1 regularization-path algorithm for generalized linear models. Journal of the Royal Statistical Society, Series B 69, 659 677.
    • (2007) Journal of the Royal Statistical Society, Series B , vol.69 , pp. 659-677
    • Park, M.1    Hastie, T.2
  • 22
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846 850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 23
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp, M. A., Ross, K. N., Tamayo, P, et al 2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8, 68 74.
    • (2002) Nature Medicine , vol.8 , pp. 68-74
    • Shipp, M.A.1    Ross, K.N.2    Tamayo, P.3    Al, E.4
  • 27
    • 34249649636 scopus 로고    scopus 로고
    • Improved centroids estimation for the nearest shrunken centroid classifier
    • and
    • Wang, S. and Zhu, J. (2007). Improved centroids estimation for the nearest shrunken centroid classifier. Bioinformatics 23, 972 979.
    • (2007) Bioinformatics , vol.23 , pp. 972-979
    • Wang, S.1    Zhu, J.2
  • 28
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics 11, 95 103.
    • (1983) Annals of Statistics , vol.11 , pp. 95-103
    • Wu, C.F.J.1
  • 30
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • and
    • Yeung, K. Y., Fraley C., Murua A., Raftery A. E., and Ruzzo, W. L. (2001). Model-based clustering and data transformations for gene expression data. Bioinformatics 17, 977 987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 31
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • and
    • Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B 68, 49 67.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 34


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.