-
1
-
-
85153193641
-
-
and. Technical Report 453, Department of Statistics, University of Michigan, Ann Arbor, Michigan.
-
Choi, N. H. and Zhu, J. (2006). Variable selection with strong hierarchy constraints and its application to identification of gene-gene and gene-environment interactions. Technical Report 453, Department of Statistics, University of Michigan, Ann Arbor, Michigan.
-
(2006)
Variable Selection with Strong Hierarchy Constraints and Its Application to Identification of Gene-gene and Gene-environment Interactions
-
-
Choi, N.H.1
Zhu, J.2
-
2
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm (with discussion)
-
and
-
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B 39, 1 38.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
3
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
and
-
Dudoit, S., Fridlyand, J., and Speed, T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97, 77 87.
-
(2002)
Journal of the American Statistical Association
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.3
-
4
-
-
3242708140
-
Least angle regression
-
and
-
Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Annals of Statistics 32, 407 499.
-
(2004)
Annals of Statistics
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
5
-
-
0032441150
-
Cluster analysis and display of genome-wide expression patterns
-
and
-
Eisen, M., Spellman, P., Brown, P., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. PNAS 95, 14863 14868.
-
(1998)
PNAS
, vol.95
, pp. 14863-14868
-
-
Eisen, M.1
Spellman, P.2
Brown, P.3
Botstein, D.4
-
6
-
-
49349097250
-
Clustering objects on subsets of attributes (with discussion)
-
and.
-
Friedman, J. H. and Meulman, J. J. (2004). Clustering objects on subsets of attributes (with discussion), Journal of the Royal Statistical Society, Series B 66, 1 25.
-
(2004)
Journal of the Royal Statistical Society, Series B
, vol.66
, pp. 1-25
-
-
Friedman, J.H.1
Meulman, J.J.2
-
7
-
-
0036188158
-
Mixture modeling of gene expression data from microarray experiments
-
and
-
Ghosh, D. and Chinnaiyan, A. M. (2002). Mixture modeling of gene expression data from microarray experiments. Bioinformatics 18, 275 286.
-
(2002)
Bioinformatics
, vol.18
, pp. 275-286
-
-
Ghosh, D.1
Chinnaiyan, A.M.2
-
8
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., Lander, E. S., et al 1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531 537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
Al, E.13
-
9
-
-
0003684449
-
-
and. New York: Springer.
-
Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. Data Mining, Inference, and Prediction. New York : Springer.
-
(2001)
The Elements of Statistical Learning. Data Mining, Inference, and Prediction.
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
10
-
-
33644863012
-
Subset clustering of binary sequences, with an application to genomic abnormality data
-
Hoff, P. D. (2005). Subset clustering of binary sequences, with an application to genomic abnormality data. Biometrics 61, 1027 1036.
-
(2005)
Biometrics
, vol.61
, pp. 1027-1036
-
-
Hoff, P.D.1
-
11
-
-
33645992615
-
Model-based subspace clustering
-
Hoff, P. D. (2006). Model-based subspace clustering. Bayesian Analysis 1, 321 344.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 321-344
-
-
Hoff, P.D.1
-
12
-
-
0033982936
-
KEGG: Kyoto Encyclopedia of Genes and Genomes
-
and
-
Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28, 27 30.
-
(2000)
Nucleic Acids Research
, vol.28
, pp. 27-30
-
-
Kanehisa, M.1
Goto, S.2
-
13
-
-
33845734547
-
Variable selection in clustering via Dirichlet process mixture models
-
and
-
Kim, S., Tadesse, M. G., and Vannucci, M. (2006). Variable selection in clustering via Dirichlet process mixture models. Biometrika 93, 877 893.
-
(2006)
Biometrika
, vol.93
, pp. 877-893
-
-
Kim, S.1
Tadesse, M.G.2
Vannucci, M.3
-
14
-
-
18144444239
-
Cluster-Rasch models for microarray gene expression data
-
and. research0031.1-0031.13
-
Li H. and Hong F. (2001). Cluster-Rasch models for microarray gene expression data. Genome Biology 2, research0031.1-0031.13.
-
(2001)
Genome Biology
, vol.2
-
-
Li, H.1
Hong, F.2
-
15
-
-
15044339834
-
Bayesian clustering with variable and transformation selection (with discussion)
-
and
-
Liu, J. S., Zhang, J. L., Palumbo, M. J., and Lawrence, C. E. (2003). Bayesian clustering with variable and transformation selection (with discussion). Bayesian Statistics 7, 249 275.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 249-275
-
-
Liu, J.S.1
Zhang, J.L.2
Palumbo, M.J.3
Lawrence, C.E.4
-
16
-
-
32844472040
-
Feature selection in k-median clustering
-
and. La Buena Vista, Florida, pp.
-
Mangasarian, O. L. and Wild, E. W. (2004). Feature selection in k-median clustering. Proceedings of SIAM International Conference on Data Mining, Workshop on Clustering High Dimensional Data and its Applications, April 24, 2004, La Buena Vista, Florida, pp. 23 28.
-
(2004)
Proceedings of SIAM International Conference on Data Mining, Workshop on Clustering High Dimensional Data and Its Applications
, pp. 23-28
-
-
Mangasarian, O.L.1
Wild, E.W.2
-
17
-
-
0036203115
-
A mixture model-based approach to the clustering of microarray expression data
-
and
-
McLachlan, G. J., Bean, R. W., and Peel, D. (2002). A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18, 413 422.
-
(2002)
Bioinformatics
, vol.18
, pp. 413-422
-
-
McLachlan, G.J.1
Bean, R.W.2
Peel, D.3
-
18
-
-
34249029861
-
Penalized model-based clustering with application to variable selection
-
and
-
Pan, W. and Shen, X. (2007). Penalized model-based clustering with application to variable selection. Journal of Machine Learning Research 8, 1145 1164.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1145-1164
-
-
Pan, W.1
Shen, X.2
-
19
-
-
33750022956
-
Semi-supervised learning via penalized mixture model with application to microarray sample classification
-
and
-
Pan, W., Shen, X., Jiang, A., and Hebbel, R. P. (2006). Semi-supervised learning via penalized mixture model with application to microarray sample classification Bioinformatics 22, 2388 2395.
-
(2006)
Bioinformatics
, vol.22
, pp. 2388-2395
-
-
Pan, W.1
Shen, X.2
Jiang, A.3
Hebbel, R.P.4
-
22
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846 850.
-
(1971)
Journal of the American Statistical Association
, vol.66
, pp. 846-850
-
-
Rand, W.M.1
-
23
-
-
18244409933
-
Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
-
Shipp, M. A., Ross, K. N., Tamayo, P, et al 2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8, 68 74.
-
(2002)
Nature Medicine
, vol.8
, pp. 68-74
-
-
Shipp, M.A.1
Ross, K.N.2
Tamayo, P.3
Al, E.4
-
24
-
-
20444465712
-
Bayesian variable selection in clustering high-dimensional data
-
and
-
Tadesse, M. G., Sha, N., and Vannucci, M. (2005). Bayesian variable selection in clustering high-dimensional data. Journal of the American Statistical Association 100, 602 617.
-
(2005)
Journal of the American Statistical Association
, vol.100
, pp. 602-617
-
-
Tadesse, M.G.1
Sha, N.2
Vannucci, M.3
-
26
-
-
85153296963
-
-
and. Technical Report 449, Department of Statistics, University of Michigan, Ann Arbor, Michigan.
-
Wang, S. and Zhu, J. (2006). Variable selection for model-based high-dimensional clustering and its application to microarray data. Technical Report 449, Department of Statistics, University of Michigan, Ann Arbor, Michigan.
-
(2006)
Variable Selection for Model-based High-dimensional Clustering and Its Application to Microarray Data
-
-
Wang, S.1
Zhu, J.2
-
27
-
-
34249649636
-
Improved centroids estimation for the nearest shrunken centroid classifier
-
and
-
Wang, S. and Zhu, J. (2007). Improved centroids estimation for the nearest shrunken centroid classifier. Bioinformatics 23, 972 979.
-
(2007)
Bioinformatics
, vol.23
, pp. 972-979
-
-
Wang, S.1
Zhu, J.2
-
28
-
-
0002210265
-
On the convergence properties of the EM algorithm
-
Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics 11, 95 103.
-
(1983)
Annals of Statistics
, vol.11
, pp. 95-103
-
-
Wu, C.F.J.1
-
29
-
-
85153182183
-
-
and. Available at. as Research Report 2007-017, Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota.
-
Xie, B., Pan, W., and Shen, X. (2007). Penalized model-based clustering with cluster-specific diagonal covariances and grouped variables. Available at http://www.biostat.umn.edu./rrs.php as Research Report 2007-017, Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota.
-
(2007)
Penalized Model-based Clustering with Cluster-specific Diagonal Covariances and Grouped Variables
-
-
Xie, B.1
Pan, W.2
Shen, X.3
-
30
-
-
0034782618
-
Model-based clustering and data transformations for gene expression data
-
and
-
Yeung, K. Y., Fraley C., Murua A., Raftery A. E., and Ruzzo, W. L. (2001). Model-based clustering and data transformations for gene expression data. Bioinformatics 17, 977 987.
-
(2001)
Bioinformatics
, vol.17
, pp. 977-987
-
-
Yeung, K.Y.1
Fraley, C.2
Murua, A.3
Raftery, A.E.4
Ruzzo, W.L.5
-
31
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
and
-
Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B 68, 49 67.
-
(2006)
Journal of the Royal Statistical Society, Series B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
32
-
-
34447335946
-
-
and. Technical Report, Department of Statistics, University of California, Berkeley.
-
Zhao, P., Rocha, G., and Yu, B. (2006). Grouped and hierarchical model selection through composite absolute penalties. Technical Report, Department of Statistics, University of California, Berkeley.
-
(2006)
Grouped and Hierarchical Model Selection Through Composite Absolute Penalties
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
33
-
-
49749088453
-
-
and. Technical Report 464, Department of Statistics, University of Michigan, Ann Arbor, Michigan.
-
Zhou, N. and Zhu, J. (2007). Group variable selection via a hierarchical Lasso and its Oracle property. Technical Report 464, Department of Statistics, University of Michigan, Ann Arbor, Michigan.
-
(2007)
Group Variable Selection Via a Hierarchical Lasso and Its Oracle Property
-
-
Zhou, N.1
Zhu, J.2
|