메뉴 건너뛰기




Volumn 9, Issue 1, 2008, Pages 100-113

Group additive regression models for genomic data analysis

Author keywords

AFT models; Boosting; Gradient descent boosting; Pathway

Indexed keywords

MATRIX METALLOPROTEINASE;

EID: 37249033229     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxm015     Document Type: Article
Times cited : (40)

References (19)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Petrov, B. N. and Csaki, F, editors, Budapest: Akademia Kiado. pp
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In: Petrov, B. N. and Csaki, F. (editors), 2nd International Symposium on Information Theory. Budapest: Akademia Kiado. pp. 267-281.
    • (1973) 2nd International Symposium on Information Theory , pp. 267-281
    • AKAIKE, H.1
  • 3
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • BÜHLMANN, P. (2006). Boosting for high-dimensional linear models. Annals of Statistics 34, 559-583.
    • (2006) Annals of Statistics , vol.34 , pp. 559-583
    • BÜHLMANN, P.1
  • 4
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • FRIEDMAN, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics 29, 1189-1232.
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • FRIEDMAN, J.H.1
  • 5
    • 33745466826 scopus 로고    scopus 로고
    • HOTHORN, T., BÜHLMANN, P., DUDOIT, S., MOLINARO, A. AND VAN DER LAAN, M. J. (2006). Survival ensembles. Biostatistics 7, 355-373.
    • HOTHORN, T., BÜHLMANN, P., DUDOIT, S., MOLINARO, A. AND VAN DER LAAN, M. J. (2006). Survival ensembles. Biostatistics 7, 355-373.
  • 6
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in non-parametric regression using an improved Akaike information criterion
    • HURVICH, C., SIMONOFF, J. AND TSAI, C.-L. (1998). Smoothing parameter selection in non-parametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society, Series B 60, 271-293.
    • (1998) Journal of the Royal Statistical Society, Series B , vol.60 , pp. 271-293
    • HURVICH, C.1    SIMONOFF, J.2    TSAI, C.-L.3
  • 7
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • KANEHISA, M. AND GOTO, S. (2002). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27-30.
    • (2002) Nucleic Acids Research , vol.28 , pp. 27-30
    • KANEHISA, M.1    GOTO, S.2
  • 8
    • 37249052645 scopus 로고    scopus 로고
    • Censored data regression in high-dimension and low-sample size settings for genomic applications
    • Biswas, A, Datta, S, Fine, J. and Segal, M, editors, in press
    • LI, H. (2006). Censored data regression in high-dimension and low-sample size settings for genomic applications. In: Biswas, A., Datta, S., Fine, J. and Segal, M., (editors), Statistical Advances in Biomedical Sciences (in press).
    • (2006) Statistical Advances in Biomedical Sciences
    • LI, H.1
  • 11
    • 4143134235 scopus 로고    scopus 로고
    • The future of association studies: Gene-based analysis and replication
    • NEALE, B. M. AND SHAM, P. C. (2004). The future of association studies: gene-based analysis and replication. American Journal of Human Genetics 75, 353-362.
    • (2004) American Journal of Human Genetics , vol.75 , pp. 353-362
    • NEALE, B.M.1    SHAM, P.C.2
  • 12
    • 34147177060 scopus 로고    scopus 로고
    • Averaged gene expressions for regression
    • PARK, M. Y., HASTIE, T. AND TIBSHIRANI, R. (2007). Averaged gene expressions for regression. Biostatistics 8, 212-227.
    • (2007) Biostatistics , vol.8 , pp. 212-227
    • PARK, M.Y.1    HASTIE, T.2    TIBSHIRANI, R.3
  • 14
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • THE GENE ONTOLOGY CONSORTIUM
    • THE GENE ONTOLOGY CONSORTIUM (2000). Gene ontology: tool for the unification of biology. Nature Genetics 25, 25-29.
    • (2000) Nature Genetics , vol.25 , pp. 25-29
  • 17
    • 0027080802 scopus 로고
    • The accelerated, failure time model: A useful alternative to the Cox regression model in survival analysis
    • WEI, L. J. (1992). The accelerated, failure time model: a useful alternative to the Cox regression model in survival analysis. Statistics in Medicine 11, 1871-1879.
    • (1992) Statistics in Medicine , vol.11 , pp. 1871-1879
    • WEI, L.J.1
  • 18
    • 34147120136 scopus 로고    scopus 로고
    • Nonparametric pathway-based regression models for analysis of genomic data
    • WEI, Z. AND LI, H. (2007). Nonparametric pathway-based regression models for analysis of genomic data. Biostatistics 8, 265-284.
    • (2007) Biostatistics , vol.8 , pp. 265-284
    • WEI, Z.1    LI, H.2
  • 19
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • YUAN, M. AND LIN, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B 68, 49-67.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-67
    • YUAN, M.1    LIN, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.