메뉴 건너뛰기




Volumn 19, Issue 2, 2011, Pages 121-135

Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data

Author keywords

1 regularization; 2 regularization; Conjugate gradient; functional connectivity; interior point method; maximum likelihood estimate (MLE); neuronal interactions; penalized maximum likelihood; point process generalized linear model; variational Bayes

Indexed keywords

CONJUGATE GRADIENT; FUNCTIONAL CONNECTIVITY; INTERIOR-POINT METHOD; MAXIMUM LIKELIHOOD ESTIMATE (MLE); NEURONAL INTERACTIONS; PENALIZED MAXIMUM LIKELIHOOD; POINT PROCESS GENERALIZED LINEAR MODEL; VARIATIONAL BAYES;

EID: 79954548587     PISSN: 15344320     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNSRE.2010.2086079     Document Type: Article
Times cited : (50)

References (51)
  • 1
    • 0024599599 scopus 로고
    • Dynamics of neuronal firing correlation: Modulation of 'effective connectivity'
    • A. Aertsen, G. Gerstein, M. K. Habib, and G. Palm, "Dynamics of neuronal firing correlation: Modulation of 'effective connectivity'," J. Neurophysiol., vol. 61, pp. 900-917, 1989.
    • (1989) J. Neurophysiol. , vol.61 , pp. 900-917
    • Aertsen, A.1    Gerstein, G.2    Habib, M.K.3    Palm, G.4
  • 4
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike data analysis
    • E. N. Brown, R. Barbieri, V. Ventura, R. E. Kass, and L. M. Frank, "The time-rescaling theorem and its application to neural spike data analysis," Neural Computat., vol. 14, no. 2, pp. 325-346, 2002.
    • (2002) Neural Computat. , vol.14 , Issue.2 , pp. 325-346
    • Brown, E.N.1    Barbieri, R.2    Ventura, V.3    Kass, R.E.4    Frank, L.M.5
  • 6
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: State-of-the-art and future challenges
    • DOI 10.1038/nn1228
    • E. N. Brown, R. E. Kass, and P. P. Mitra, "Multiple neural spike train data analysis: State-of -the-art and future challenges," Nat. Neurosci., vol. 7, no. 5, pp. 456-461, 2004. (Pubitemid 38552378)
    • (2004) Nature Neuroscience , vol.7 , Issue.5 , pp. 456-461
    • Brown, E.N.1    Kass, R.E.2    Mitra, P.P.3
  • 7
    • 77956690006 scopus 로고    scopus 로고
    • Theory of point processes for neural systems
    • C. C. Chow, Ed. et al. New York: Elsevier
    • E. N. Brown, "Theory of point processes for neural systems," in Methods and Models in Neurophysics, C. C. Chow, Ed. et al. New York: Elsevier, 2005, pp. 691-727.
    • (2005) Methods and Models in Neurophysics , pp. 691-727
    • Brown, E.N.1
  • 8
    • 77950969853 scopus 로고    scopus 로고
    • A regularized point process generalized linear model for assessing the functional connectivity in the cat motor cortex
    • Minneapolis, MN
    • Z. Chen, D. F. Putrino, D. E. Ba, S. Ghosh, R. Barbieri, and E. N. Brown, "A regularized point process generalized linear model for assessing the functional connectivity in the cat motor cortex," in Proc. IEEE Eng. Med. Biol. Soc. Conf., Minneapolis, MN, 2009, pp. 5006-5009.
    • (2009) Proc. IEEE Eng. Med. Biol. Soc. Conf. , pp. 5006-5009
    • Chen, Z.1    Putrino, D.F.2    Ba, D.E.3    Ghosh, S.4    Barbieri, R.5    Brown, E.N.6
  • 9
    • 78049378634 scopus 로고    scopus 로고
    • Variational Bayesian inference for point process generalized linear models in neural spike trains analysis
    • Dallas, TX
    • Z. Chen, F. Kloosterman, M. A. Wilson, and E. N. Brown, "Variational Bayesian inference for point process generalized linear models in neural spike trains analysis," in Proc. IEEE ICASSP'10, Dallas, TX, 2010, pp. 2086-2089.
    • (2010) Proc. IEEE ICASSP'10 , pp. 2086-2089
    • Chen, Z.1    Kloosterman, F.2    Wilson, M.A.3    Brown, E.N.4
  • 10
    • 0023688346 scopus 로고
    • Maximum likelihood identication of neural point process systems
    • E. Chornoboy, L. Schramm, and A. Karr, "Maximum likelihood identication of neural point process systems," Biol. Cybern., vol. 59, pp. 265-275, 1988.
    • (1988) Biol. Cybern. , vol.59 , pp. 265-275
    • Chornoboy, E.1    Schramm, L.2    Karr, A.3
  • 11
    • 47549084085 scopus 로고    scopus 로고
    • Analysis of between-trial and within-trial neural spiking dynamics
    • G. Czanner, U. T. Eden, S. Wirth, M. Yanike, W. A. Suzuki, and E. N. Brown, "Analysis of between-trial and within-trial neural spiking dynamics," J. Neurophy., vol. 99, pp. 2672-2693, 2008.
    • (2008) J. Neurophy. , vol.99 , pp. 2672-2693
    • Czanner, G.1    Eden, U.T.2    Wirth, S.3    Yanike, M.4    Suzuki, W.A.5    Brown, E.N.6
  • 14
    • 65249090828 scopus 로고    scopus 로고
    • Identifying functional connectivity in large scale neural ensemble recordings: A multiscale data mining approach
    • S. Eldawlatly, R. Jin, and K. Oweiss, "Identifying functional connectivity in large scale neural ensemble recordings: A multiscale data mining approach," Neural Computat., vol. 21, pp. 450-477, 2009.
    • (2009) Neural Computat. , vol.21 , pp. 450-477
    • Eldawlatly, S.1    Jin, R.2    Oweiss, K.3
  • 15
    • 77649241232 scopus 로고    scopus 로고
    • On the use of dynamic Bayesian networks in reconstructing functional neuronal networks from spike train ensembles
    • S. Eldawlatly, Y. Zhou, R. Jin, and K. Oweiss, "On the use of dynamic Bayesian networks in reconstructing functional neuronal networks from spike train ensembles," Neural Computat., vol. 22, pp. 158-189, 2010.
    • (2010) Neural Computat. , vol.22 , pp. 158-189
    • Eldawlatly, S.1    Zhou, Y.2    Jin, R.3    Oweiss, K.4
  • 17
    • 77950537175 scopus 로고    scopus 로고
    • Regularized paths for generalized linear models via coordinate descent
    • J. Friedman, T. Hastie, and R. Tibshirani, "Regularized paths for generalized linear models via coordinate descent," J. Stat. Software, vol. 33, no. 1, 2010.
    • (2010) J. Stat. Software , vol.33 , Issue.1
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 20
    • 0014680923 scopus 로고
    • Simultaneous recorded trains of action potentials: Analysis and functional interpretation
    • G. L. Gerstein and D. H. Perkel, "Simultaneous recorded trains of action potentials: Analysis and functional interpretation," Science, vol. 164, pp. 828-830, 1969.
    • (1969) Science , vol.164 , pp. 828-830
    • Gerstein, G.L.1    Perkel, D.H.2
  • 21
    • 85162021749 scopus 로고    scopus 로고
    • Bayesian inference for spiking neuron models with a sparsity prior
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA: MIT Press
    • S. Gerwinn, J. H. Macke, M. Seeger, and M. Bethge, "Bayesian inference for spiking neuron models with a sparsity prior," in Adv. Neural Info. Proc. Syst. (NIPS), J. C. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA: MIT Press, 20, 2008, pp. 529-536.
    • (2008) Adv. Neural Info. Proc. Syst. (NIPS) , vol.20 , pp. 529-536
    • Gerwinn, S.1    MacKe, J.H.2    Seeger, M.3    Bethge, M.4
  • 22
    • 70249085225 scopus 로고    scopus 로고
    • Patterns of spatio-temporal correlations in the neural activity of the cat motor cortex during trained forelimb movements
    • S. Ghosh, D. F. Putrino, B. Burro, and A. Ring, "Patterns of spatio-temporal correlations in the neural activity of the cat motor cortex during trained forelimb movements," Somatosensory Motor Res., vol. 26, pp. 31-49, 2009.
    • (2009) Somatosensory Motor Res. , vol.26 , pp. 31-49
    • Ghosh, S.1    Putrino, D.F.2    Burro, B.3    Ring, A.4
  • 24
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • T. S. Jaakkola and M. I. Jordan, "Bayesian parameter estimation via variational methods," Stat. Comput., vol. 10, pp. 25-37, 2000.
    • (2000) Stat. Comput. , vol.10 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 25
    • 21544439557 scopus 로고    scopus 로고
    • Statistical issues in the analysis of neuronal data
    • DOI 10.1152/jn.00648.2004
    • R. E. Kass, V. Ventura, and E. N. Brown, "Statistical issues in the analysis of neuronal data," J. Neurophysiol., vol. 94, pp. 8-25, 2005. (Pubitemid 40923224)
    • (2005) Journal of Neurophysiology , vol.94 , Issue.1 , pp. 8-25
    • Kass, R.E.1    Ventura, V.2    Brown, E.N.3
  • 31
    • 33845459534 scopus 로고    scopus 로고
    • A mathematical framework for inferring connectivity in probabilistic neuronal networks
    • DOI 10.1016/j.mbs.2006.08.020, PII S0025556406001556
    • D. Nykamp, "A mathematical framework for inferring connectivity in probabilistic neuronal networks," Math. Biosci., vol. 205, pp. 204-251, 2007. (Pubitemid 44894450)
    • (2007) Mathematical Biosciences , vol.205 , Issue.2 , pp. 204-251
    • Nykamp, D.Q.1
  • 32
    • 23044490853 scopus 로고    scopus 로고
    • Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
    • DOI 10.1162/0899766054322973
    • M. Okatan, M. A.Wilson, and E. N. Brown, "Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity," Neural Computat., vol. 17, pp. 1927-1961, 2005. (Pubitemid 41057057)
    • (2005) Neural Computation , vol.17 , Issue.9 , pp. 1927-1961
    • Okatan, M.1    Wilson, M.A.2    Brown, E.N.3
  • 33
    • 34547849507 scopus 로고    scopus 로고
    • 1 regularization-path algorithm for generalized linear models
    • 1 regularization-path algorithm for generalized linear models," J. R. Stat. Soc. B, vol. 69, no. 4, pp. 659-677, 2007.
    • (2007) J. R. Stat. Soc. B , vol.69 , Issue.4 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 35
    • 0014104894 scopus 로고
    • Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains
    • D. H. Perkel, G. L. Gerstein, and G. P. Moore, "Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains," Biophy. J., vol. 7, pp. 419-440, 1967.
    • (1967) Biophy. J. , vol.7 , pp. 419-440
    • Perkel, D.H.1    Gerstein, G.L.2    Moore, G.P.3
  • 36
    • 42149195907 scopus 로고    scopus 로고
    • Bayesian modelling and analysis of spatio-temporal neuronal networks
    • F. Rigat, M. de Gunst, and J. van Pelt, "Bayesian modelling and analysis of spatio-temporal neuronal networks," Bayesian Anal., vol. 1, no. 4, pp. 733-764, 2006.
    • (2006) Bayesian Anal. , vol.1 , Issue.4 , pp. 733-764
    • Rigat, F.1    De Gunst, M.2    Van Pelt, J.3
  • 37
    • 77958486823 scopus 로고    scopus 로고
    • Dept. Comput. Sci., Univ. Wisconsin, Tech. Rep.
    • 1 -regularization Dept. Comput. Sci., Univ. Wisconsin, Tech. Rep. 2009 [Online].Available: http://pages.cs.wisc.edu/∼gfung/GeneralL1/ URL:
    • (2009) 1 -regularization
    • Schmidt, M.1    Fung, G.2    Rosaless, R.3
  • 38
    • 33646170322 scopus 로고    scopus 로고
    • Weak pair-wise, correlations imply strongly correlated network states in a neural population
    • E. Schneidman, M. Berry, R. Segev, and W. Bialek, "Weak pair-wise, correlations imply strongly correlated network states in a neural population, Nature, vol. 440, pp. 10007-10212, 2006.
    • (2006) Nature , vol.440 , pp. 10007-10212
    • Schneidman, E.1    Berry, M.2    Segev, R.3    Bialek, W.4
  • 39
    • 38049179024 scopus 로고    scopus 로고
    • Bayesian inference for sparse generalized linear models," in
    • M. Seeger, S. Gerwinn, and M. Bethge, "Bayesian inference for sparse generalized linear models," in Proc. ECML'07, 2007, pp. 298-309.
    • (2007) Proc. ECML'07 , pp. 298-309
    • Seeger, M.1    Gerwinn, S.2    Bethge, M.3
  • 43
    • 0030628432 scopus 로고    scopus 로고
    • Detecting synchronous cell assemblies with limited data and overlapping assemblies
    • G. Strangman, "Detecting synchronous cell assemblies with limited data and overlapping assemblies," Neural Computat., vol. 9, pp. 51-76, 1997. (Pubitemid 127622526)
    • (1997) Neural Computation , vol.9 , Issue.1 , pp. 51-76
    • Strangman, G.1
  • 44
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani, "Regression shrinkage and selection via the Lasso," J. R. Stat. Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. R. Stat. Soc. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 45
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the cox model
    • DOI 10.1002/(SICI)1097-0258(199 70228)16:4<385::AID-SIM380>3.0. CO;2-3
    • R. Tibshirani, "The Lasso for variable selection in the Cox model," Stat. Med., vol. 16, pp. 385-395, 1997. (Pubitemid 27073009)
    • (1997) Statistics in Medicine , vol.16 , Issue.4 , pp. 385-395
    • Tibshirani, R.1
  • 47
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble and covariate effects
    • W. Truccolo, U. T. Eden, M. Fellow, J. D. Donoghue, and E. N. Brown, "A point process framework for relating neural spiking activity to spiking history, neural ensemble and covariate effects," J. Neurophysiol., vol. 93, pp. 1074-1089, 2005.
    • (2005) J. Neurophysiol. , vol.93 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellow, M.3    Donoghue, J.D.4    Brown, E.N.5
  • 48
    • 33847636281 scopus 로고    scopus 로고
    • Nonparametric modeling of neural point processes via stochastic gradient boosting regression
    • W. Truccolo and J. D. Donoghue, "Nonparametric modeling of neural point processes via stochastic gradient boosting regression," Neural Computat., vol. 19, no. 3, pp. 672-705, 2007.
    • (2007) Neural Computat. , vol.19 , Issue.3 , pp. 672-705
    • Truccolo, W.1    Donoghue, J.D.2
  • 49
    • 73949086190 scopus 로고    scopus 로고
    • Collective dynamics in human and monkey sensorimotor cortex: Predicting single neuron spikes
    • W. Truccolo, L. R. Hochberg, and J. P. Donoghue, "Collective dynamics in human and monkey sensorimotor cortex: Predicting single neuron spikes," Nat. Neurosci., vol. 13, pp. 105-111, 2010.
    • (2010) Nat. Neurosci. , vol.13 , pp. 105-111
    • Truccolo, W.1    Hochberg, L.R.2    Donoghue, J.P.3
  • 50
    • 0007962152 scopus 로고    scopus 로고
    • A new method for detecting neural interconnectivity
    • K. J. Utikal, "A new method for detecting neural interconnectivity," Biol. Cybern., vol. 76, pp. 459-470, 1997. (Pubitemid 127665205)
    • (1997) Biological Cybernetics , vol.76 , Issue.6 , pp. 459-470
    • Utikal, K.J.1
  • 51
    • 0141430932 scopus 로고    scopus 로고
    • An Adjustment to the Time-Rescaling Method for Application to Short-Trial Spike Train Data
    • DOI 10.1162/089976603322385072
    • M. C. Wiener, "An adjustment to the time-rescaling method for application to short-trial spike train data," Neural Computat., vol. 15, pp. 2565-2576, 2003. (Pubitemid 37206928)
    • (2003) Neural Computation , vol.15 , Issue.11 , pp. 2565-2576
    • Wiener, M.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.